
Robust Motion Planning with Timed Temporal
Logic Tasks via Hybrid Feedback Control

Fernando S. Barbosa∗, Lars Lindemann†, Dimos V. Dimarogonas† and Jana Tumova∗
∗Division of Robotics, Perception and Learning (RPL), KTH Royal Institute of Technology, Stockholm, Sweden

†Division of Decision and Control Systems, KTH Royal Institute of Technology, Stockholm, Sweden.
Email: {fdsb, llindem, dimos, tumova}@kth.se

I. INTRODUCTION

In recent years, temporal logics have become a popular
task and motion planning formalism, enriching the traditional
A-to-B planning with more complex, structured tasks. For
instance, with the use of Linear Temporal Logic (LTL), one
can formalize properties such as “Visit region A, then B,
while avoiding a dangerous area C”. In order to allow for
time constraints in the task specification, such as “Visit A
within 10 to 20 time units, then visit B no earlier than 30 time
units after reaching A, while avoiding C”, a timed temporal
logic is required, such as Metric Interval Temporal Logic
(MITL). A general approach to planning under temporal logic
tasks builds on finding a suitable discrete abstraction of the
system dynamics, such as a graph obtained from a sampling-
based motion planning method, ensuring that a transition
in the abstraction can be followed via an application of a
certain control law [4]. When it comes to planning under
timed temporal logic tasks, finding such a discrete abstraction
becomes much more challenging.

Motion planning for dynamical systems is often posed as
a problem to find a sequence of control inputs that drives the
system from the initial to a goal configuration while avoiding
obstacles. Since a simplified version of the system dynamics
is used by the planner, the resulting plan is not robust to
disturbance, noise and unmodeled dynamics. For instance, in
[6] a synergistic combination of high-level discrete planning
with sampling-based motion planning is proposed; and even
though the proposed approach is efficient when compared to
other methods, it relies on the model of the system to find a
sequence of constant control inputs to take it from start to goal
position. On the other hand, the motion planning algorithm
can assume the existence of a low-level controller, capable of
driving the system from one configuration to another, and plan
a sequence of configurations that drives the system from start
to goal. However, such low-level controller is not known by the
planner, and the overall real-time performance and robustness
of the system can not be guaranteed a priori.

We propose to integrate motion planning and feedback
control into one framework, and subject a single-agent system
to high-level, time-dependent task specifications written as a
metric temporal logic formula. Our goal is to enhance the
overall robustness of the system in relation to noise, dis-
turbance and unmodeled dynamics. Furthermore, the planner

Fig. 1. The approach.

is designed to be agnostic to the nonlinear, control-affine
dynamics of the system, a feature made possible by the control
law proposed.

In our recent work [2] we propose an approach to find
and follow a trajectory fulfilling a time-bounded MITL task
that integrates sampling-based motion planning with low-level
feedback controller design. A general overview is presented
in Fig. 1, and can be summarized as follows: an RRT?-based
algorithm is used to find an obstacle-free path – a sequence of
waypoints – in the workspace that (i) satisfies the time-abstract
version of the task specification (Zone Automaton - ZA), and
(ii) is enclosed by a sequence of convex polytopes to be used
by a Time-varying Control Barrier Function [5]. Time stamps
to reach each waypoint are calculated by using clock zones of
the ZA as constraints of a Linear Program (LP).

II. PROBLEM DEFINITION AND APPROACH

Let x ∈ Rn, u ∈ Rm, d ∈ D ⊂ Rn, where D := {d ∈
Rn|‖d‖ ≤ D} for some D ≥ 0, be the state, input, and
unknown disturbance, respectively, of a nonlinear system

ẋ = f(x) + g(x)u+ d(t), (1)

with locally Lipschitz continuous functions f : Rn → Rn and
g : Rn → Rn×m such that g(x)g(x)T is positive definite for
all x ∈ Rn and d : R≥0 → D is piecewise continuous.

A time-bounded Metric Interval Temporal Logic (MITL)
formula over a set of atomic propositions (AP) and time
intervals [a, b], with a, b ∈ N and a < b is defined as:

φ := > | p | ¬φ | φ1 ∧ φ2 | φ1U[a,b]φ2 | F[a,b]φ | G[a,b]φ, (2)

where the proposition p ∈ AP and ¬, ∧, are standard negation
and conjunction, and U , F and G correspond to temporal
operators until, eventually and always, respectively. We state
our problem as follows:



Problem 1. Given a system (1), a labeled workspace W
partitioned into obstacles (Wobs ) and free-space (Wfree ), and
a high-level task specification φ in time-bounded MITL, find
a control law u producing a collision-free trajectory x that
generates a timed word w(x) satisfying φ.

A. Approach

Our approach to Problem 1 is divided into three steps.
First, the time-bounded MITL task specification φ is translated
into a Timed Automaton A and thereafter to its time-abstract
representation Zone automaton Z(A). The intuition here is
that if there exists a path of the system that satisfies Z(A),
then there must exist a sequence of time stamps that, together
with the path, will satisfy the Timed Automaton A and,
therefore, the task φ. The Z(A) is used in a sampling-based,
probabilistically complete motion planning algorithm, named
MITL-RRT?, and returns (i) a sequence of |p| waypoints that
give a path satisfying an untimed version of the specification,
and (ii) assumptions to be met by the low-level controller in the
form of a sequence of |p| − 1 convex, obstacle-free polytopes
πi within which the trajectory of the system has to stay.

Second, we find appropriate time stamps to the sequence of
waypoints so that the corresponding timed path satisfies the
task specification φ. To that end, we exploit the structure of
a zone automaton and use its clock zones as constraints of a
Linear Program (LP).

Third, we design a hybrid feedback control law that, applied
to system (1), tracks the timed path returned by the motion
planner while staying within the obstacle-free polytopes re-
turned by MITL-RRT?. It consists of |p| − 1 continuous-time
feedback control laws ui(x, t), a switching mechanism

u(x, t) = ui(x, t) for ti−1 ≤ t < ti (3)

with i ∈ {1, . . . , |p| − 1} and where each ui(x, t) is designed
based on Time-varying Control Barrier Functions formulated
to solve requirements stated in Signal Temporal Logic (STL)
[5]. In order to drive the system starting in xi−1 at ti−1

to xi at ti time units while staying inside an obstacle-free
convex polytope πi, whose H-representation is Aix ≤ bi, the
corresponding STL formula ψi is written as

ψi = F[ti,ti](‖x− xi‖ ≤ ε) ∧ G[ti−1,ti](Aix ≤ Bi), (4)

with Bi = bi + ε. We expand the polytopes by ε to ensure
the ball of radius ε around each xi is inside both πi and πi+1.
Due to (1) and the sequence of convex polytopes, there always
exists a controller ui(x, t) for each ψi.

B. Results

Consider a dynamical system with coupled input given by

ẋ1 = u1 − 0.5u2, ẋ2 = u2

deployed in an office-like environment, with obstacles that
resembles tables and walls and two goal regions A and B,
that is subject to the following task specification

φ1 = F[5,10]A ∧ F[15,20]B.

(a)

(b)

Fig. 2. (a) presents the resulting trajectory, in blue, for φ1 = F[5,10]A ∧
F[15,20]B. The system starts from the bottom right, and the controller drives
it throughout the waypoints marked in red dots without leaving the polytopes.
(b) shows the system evolution in time when subject to φ1. The black dots
represent the projection of the timed path onto x1 and x2.

Fig. 2a shows the trajectory of the system on the workspace
when subject to φ1, with the corresponding waypoints and
polytopes. Note that our approach finds a sequence of overlap-
ping, convex, obstacle-free polytopes connecting every way-
point. Moreover, the proposed hybrid feedback control law
solves an optimization problem in the attempt to minimize the
control effort, and therefore two waypoints are not connected
by straight lines in the resulting trajectory of the system.
Fig. 2b presents the evolution of such trajectory in relation
to time.

III. CONCLUSION AND FUTURE WORK

This work is our first step into the integrating motion plan-
ning and control for high-level, time-dependent, temporal logic
task specifications. We are currently working on replacing
the current MITL task specification with Signal Temporal
Logic in order to enable the use of its quantitative semantics
into the sampling-based motion planner, as we have done in
[1, 3], in which we introduce the concept of spatial preference,
that weighs between finishing the task quickly and respecting
the user-defined safety preference. Furthermore, we aim at
making the framework applicable to a larger class of robotic
systems, and to that end we are analyzing the possibility of
(i) substituting the low-level controller by one that allows
the control of systems with second-order dynamics, and (ii)
extending the approach to multi-agent systems.
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