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I. INTRODUCTION

Robots are entering human social environments (HSEs) such
as hospitals, homes, and factories [1]. As social beings, much
human behavior is predicated on social context - the ambient
social state that describes cultural norms, social signals, and
individual preferences [2–4]. Cues such as facial expressions,
body posture, and group behavior encode social affordances
that are critical for understanding and predicting human be-
havior [5–8]. Furthermore, humans consistently view, commu-
nicate with, and react to robots as social actors [9–13]. Many
tasks can only be completed by understanding, respecting, and
interacting with social context. For example, even in the simple
task of buying an ice cream, one must understand why people
line up to order, wait in line without cutting, and execute an
interactive dialogue before receiving the treat. Thus, in order
to act both appropriately and effectively in HSEs, it is crucial
for robots to understand social context and how to leverage
social interactions to complete tasks.

Endowing robots with social agency—the understanding of
oneself as a social actor—is an open challenge that must be
addressed before robots can plan safe and reliable behavior in
HSEs [1–4, 14]. Socially-aware planning seeks to model social
context in order to generate appropriate policies for HSEs [13–
16]. Many existing socially-aware planners use proxemics, the
social affordance of space [5], to represent social context as an
objective function over the environment [17–19]. These plan-
ners consider humans as social obstacles, i.e. obstacles with an
additional social occupancy that encodes proxemic affordances
such as personal space [20] and visibility preferences [21].
Social obstacle planners then generate human-aware paths on
these costmaps using lightweight graph-search [19], potential
field [22], or sampling-based [23] planners. However, these
path planners do not consider high-level decisions about
subtasks beyond motion and obstacle avoidance, and are
therefore insufficient for planning the complex, interactive
policies necessary in HSEs.

Joint task and motion planning (TMP) is a central area of
research in robotics and artificial intelligence that seeks to
address this issue by sharing information between task and
motion planners. Many TMP algorithms interleave task and
motion planning, replanning at the task level (i.e. reordering
or choosing new subtasks) when the high-level symbolic plan
violates low-level geometric constraints (e.g. the robot is un-
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able to reach the desired object without collision) [24–27]. The
majority of this work focuses on manipulation tasks, where
the interactions between the robot and the world are simple
and well-defined. Few studies have addressed joint TMP in
HSEs [28, 29], and these approaches still largely incorporate
human models for the purpose of avoiding collisions during
task execution. While these methods are a great start to a
difficult problem, one key gap is the consideration of social
context. Without this, robots are at risk of both distressing
those around it by violating social norms and of failing to find
the optimal task plan by ignoring possible social interactions.

It is nontrivial to integrate social awareness with modern
TMP. Social constraints can be considered relaxed constraints,
i.e. constraints that can be only partially satisfied when needed
to meet a stronger constraint such as collision avoidance.
While some researchers incorporated relaxed constraints into
robot planners [30–32], the majority only do so in the context
of replanning low-level obstacle avoidance policies to satisfy
a static task. The few works that explore relaxed constraints
in dynamic TMP either only replan subtask order [33, 34]
or consider only simple, well-defined subtasks (e.g. recording
information, picking up a cup) [33, 35, 36].

Furthermore, most existing work does not weight the degree
of strictness of different constraints. While [35] and [36]
propose ways to weight constraints, these methods rely on
a human expert to designate their importance. In HSEs, the
relative importance of constraints varies with social context,
and since social context is also influenced by each robot
action, it is inadmissible to assume static, externally-supplied
weights. To our knowledge, there exists no joint task and
motion planner that is able to reason about complex high-level
task replanning with dynamically-varying, relaxed constraints.

II. PROPOSED ALGORITHM

In this work, we propose a socially-aware TMP algorithm
that leverages an understanding of social context to generate
appropriate and effective policy in HSEs. The key strength
of our algorithm is that it explicitly models how potential
actions affect not only objective cost (e.g. path length), but
transform social context (e.g. interrupting conversations via an
alarm). We also inform the planner of the relative importance
or urgency of its current task goal, which it uses along with its
own calculation of social constraints to determine when it is
and is not appropriate to violate social expectations to optimize
the objective function [3]. This social awareness allows a robot
to understand a fundamental aspect of society: just because



something makes your job easier does not make it the right
thing to do.

We make several assumptions in this work. We assume
knowledge of the location of the robot, static obstacles, and
people. We further assume that there is a finite, known set
of available interactions the robot can initiate with a person
or group of people. We do not assume perfect knowledge of
social context, and instead estimate its state from observing
human activity and social cues. From our previous work in
real-world hospitals and factories, we found it is feasible
to employ wearable sensors to accurately track people and
equipment and recognize important activities [37, 38].

In this work, we adopt a classic TMP architecture with
a high-level task planner and a low-level motion planner.
We separate our robot’s social interactions into two domains:
active (e.g. asking for help) and passive (e.g. accommodating
personal space). We incorporate passive social interactions into
our low-lever planner in a lightweight social obstacle planner
in order to leverage the benefits of existing work. Our task
planner models active social interactions based on a partially-
observable Markov Decision Process (POMDP). Here, social
context consists of hidden states (e.g. each person’s current ac-
tivity) that are approximated from features such as proxemics
[18] and group behavior [39].

To choose relevant features for a specific application, we
plan to consult experts in the area, extract features via learning
algorithms like neural networks, and perform extensive cross-
validation of our selection. We will collect data on social
interactions in real-world manufacturing and emergency de-
partment settings to accurately model how human-human and
human-robot interactions transform social context in these
HSEs. We will then develop interaction models for a set of
possible human-robot interactions, which our task planner will
use to plan optimal high-level policy.

The high complexity of HSEs poses concerns for POMDPs.
In order to remain tractable, our algorithm will employ a
policy-switching architecture that balances the benefits of
sophisticated social reasoning with the speed of a socially-
naive motion planner. In this model, an executor manages
the cooperation between the complex task-level POMDP and
the lightweight social obstacle motion planner. The executor
uses a lazy approach that activates the high-level planner only
where there is significant potential for active social interaction.
Assuming that interaction is only possible in a small subset of
states (often those proximal to a human), our algorithm avoids
high-level replanning for the majority of states. Furthermore,
this constraint limits the effective state space of the POMDP
to this subset. We anticipate these strategies will enable our
algorithm to remain tractable in real-world HSEs.

III. EVALUATION

To validate our algorithm, we will simulate a crowded
emergency department in which a robot must deliver medicine
to a patient’s room. We will investigate three scenarios: 1)
social interaction is helpful, but unnecessary to complete the
task; 2) social interaction is necessary; and 3) social interaction

is helpful, but socially unacceptable (e.g. if it would interrupt
a clinician treating a patient).

We will perform our study at a medical simulation center at
our institution. We will recruit clinicians and clinical learners
to realistically populate the simulation, who will be assigned
tasks to simulate various social states. For each trial, we will
record the executed plan’s path length, duration, and “social
burden” as estimated by a post-trial questionnaire. We will
compare our algorithm against two competing state-of-the-art
methods: a task-naive social motion planner, such as a pure
social obstacle model, and a socially-naive TMP, such as Ffrob
[26]. We anticipate that our algorithm will generate lower cost
plans than the task-naive social obstacle planner by leveraging
social interaction. In addition, we expect that the task-naive
planner will fail when social interaction is necessary, as in (2)
and (3), while our algorithm will find a viable plan. We also
expect that our algorithm will guarantee socially acceptable
policy, where the socially-naive TMP may fail in (3).

IV. DISCUSSION

We anticipate this work will offer the following contri-
butions: First, introduce a socially intelligent joint task and
motion planner that generates appropriate and effective poli-
cies for robots in HSEs. Second, we present a framework for
dividing social interactions into active and passive domains to
limit computational complexity and leverage existing work in
social obstacle planning. Third, we present a socially-aware,
lazy policy-switching architecture that selectively activates
high-level replanners only when necessary in order to remain
effective and tractable in complex HSEs.

To our knowledge, the proposed work is the first TMP
algorithm that enables a robot to act as an intelligent social
agent in HSEs. By explicitly modeling social context while
remaining tractable in complex environments, we anticipate
our approach will be applicable in a variety of real-world
applications. Through this work, robots will be able to un-
derstand, respect, and leverage social context to produce
acceptable and functional policy in HSEs.
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