
IEEE Int.Conf.on Tech.for Practical Robot Applications (TEPRA’13), 2013

Multi-Process Control Software for HUBO2 Plus Robot

M.X. Grey†, Neil Dantam†, Daniel M. Lofaro‡,
Aaron Bobick†, Magnus Egerstedt†, Paul Oh‡, Mike Stilman†

Abstract—Humanoid robots require greater software reli-
ability than traditional mechantronic systems if they are to
perform useful tasks in typical human-oriented environments.
This paper covers a software architecture which distributes the
load of computation and control tasks over multiple processes,
enabling fail-safes within the software. These fail-safes ensure
that unexpected crashes or latency do not produce damaging
behavior in the robot. The distribution also offers benefits for
future software development by making the architecture modular
and extensible. Utilizing a low-latency inter-process communi-
cation protocol (Ach), processes are able to communicate with
high control frequencies. The key motivation of this software
architecture is to provide a practical framework for safe and
reliable humanoid robot software development. The authors test
and verify this framework on a HUBO2 Plus humanoid robot.

I. INTRODUCTION

Due to the critical role of software in robot operation, a great
deal of consideration needs to be put into the underlying design
of a robot’s software architecture. The simplest approach to
developing robot software is to integrate all functionality, from
hardware drivers to planning algorithms, into a single exe-
cutable program. This single-process approach has the benefit
of being free from inter-process communication latency, which
might be good for performance depending on the application. It
also simplifies the design considerations required on the part of
the programmer which can make the initial stages of software
development easier.

Despite these benefits, the single-process design increases
the possibility critical system failure by making all operations
interdependent. For example, a single segmentation fault in a
single component in the software would immediately crash
all operations on the robot. For a humanoid, which must
constantly maintain dynamic balance and control, this behavior
is unacceptable. If a planning algorithm or a perception process
crashes or stalls for any reason, this should not result in the
robot losing stability and damaging itself. Rather, the robot
should maintain stationary balance while it waits for the higher
level processes to restart.

The software architecture described in this paper addresses
this concern and more. It improves software reliability by
distributing functionality between independent processes (dae-
mons) which use an efficient and flexible communication
interface called Ach. Before describing how these are used, we
will introduce basic concepts in multi-process operation and
inter-process communication, and then describe the particular
robotic platform into which this design has been integrated.

†Authors are affiliated with Georgia Institute of Technology, Atlanta,
GA, 30332, USA. {mxgrey, ndt, magnus}@gatech.edu and
{afb, mstilman}@cc.gatech.edu.

‡Author is affiliated with Drexel Univeristy, Philadelphia, PA, 19104, USA.
paul@coe.drexel.edu and dan@danLofaro.com.

A. Real-Time Robot Control with Multiple Processes

In general, a process is simply a self-contained computer
program which runs on an operating system. Processes do not
necessarily require any interaction from the user (i.e. they can
run invisibly in the background of the operating system), and
these particular processes are commonly referred to as dae-
mons. The processes discussed in this paper are daemonized,
so they run in the background of the operating system and
manage themselves, without requiring user interaction. They
also save output or error messages to logs which can be viewed
at any time.

The ability to perform real-time tasks is critical in robot ap-
plications which require dynamic balancing or quick response
time. For a multi-process architecture, this means that certain
processes need a higher priority to ensure that they perform
their tasks at a consistent frequency which corresponds to their
real-time needs. This means that the operating system will
temporarily stop lower priority tasks to let the real-time process
run whenever needed. A higher priority process always runs
first, ensuring that the computer’s resources are focused on
handling the most important tasks.

Using a multi-process approach provides modularity in the
software architecture. Stable and previously developed pro-
cesses can remain untouched even as new features are added
into the software. For example, a process which performs
motor control calculations would not need to be modified in
any way in order to implement a new planning or perception
algorithm, because these new features could simply go into
their own process. This makes the architecture extensible,
allowing for stability and consistency as software development
progresses in the future.

B. Inter-process Communication & Ach

Multi-process systems require Inter-process Communication
(IPC). Robotic systems have particular needs in this regard,
which differ from those of general-purpose computing systems.
General purpose IPC such as pipes and sockets favor older data
over newer and can block or drop newer messages (known
as Head-of-line Blocking). the most recent data sample. In
addition, it is critical to minimize message latency for real-
time tasks such as dynamic balance and force control of
manipulators.

To address the special needs of real-time systems and
produce reliable control software for our robots we use Ach1

IPC library, which enables efficient multi-process real-time
control, is more suited to robotics applications than traditional
IPC mechanisms, and is formally verified to ensure correctness
[1].

1Ach is available at http://www.golems.org/node/1526

1

http://www.golems.org/node/1526


Ach provides a publish-subscribe or message-bus interface
for multiple processes simultaneously. Typically, one process
publishes information to an Ach channel while other pro-
cesses read from the channel as needed. ROS [2] inter-process
communication is not suitable for our needs because it does
not operate fast enough to satisfy our real-time application
and suffers from the aforementioned Head-of-line Blocking.
OROCOS [3] and NAOqi [4] are not used in our architec-
ture because they do not provide the necessary multi-process
publish/subscribe system.

In addition to excellent local inter-process communication
performance, Ach also enables networked communication. A
remote computer can push messages to an Ach channel on the
robot’s on-board computer. This means that daemons which
require extra processing power, such as the Planning Daemon,
can be run on an external high-performance computer and
their output transferred via TCP or UDP to an Ach channel
in HUBO’s on-board computer. This feature can also be used
in reverse where external computers can pull messages from
HUBO’s on-board Ach channels. This networking feature of
Ach provides seamless integration between on-board real-time
processes, such as hardware and control daemons, and off-
board non-realtime processes, such as planners and loggers.

C. HUBO2 Plus

The particular software design described in this paper has been
implemented on a HUBO2 Plus humanoid robot. HUBO2 Plus
is a 130 cm (4’ 3”) tall, 42 kg (93 lb) full-size humanoid
robot commonly refered to as HUBO. It was designed and
constructed by Prof Jun-ho Oh at the HUBO Lab in the Korean
Advanced Institute of Science and Technology (KAIST) [5].
HUBO is anthropomorphic, meaning it has 2 arms, 2 legs
and a head. There are 6 degrees of freedom (DOF) in each
leg, 6 in each arm, 5 in each hand, 3 in the neck, and 1
in the waist; all totalling 38 DOF. All of the major joints
are high gain PD position controlled with the exception of
the fingers. The fingers are open-loop PWM controlled. The
sensing capability consists of a three axis force-torque (FT)
sensor on each leg between the end of the ankle and the
foot as well as between where the arm connects to the hand.
Additionally it has an inertial measurement unit (IMU) at the
center of mass and accelerometers on each foot. The reference
commands for all of the joints are sent from the primary
control computer (x86) to the individual motor controllers
via two Controller Area Network (CAN) buses. There are
currently eight HUBO’s functioning in the United States as
of December 2012. Four reside at Drexel University and one
at Georgia Tech, Purdue, Ohio State, and MIT. Jaemi HUBO
is the oldest of the HUBOs in America and has been at the
Drexel Autonomous Systems Lab2 (DASL) since 2008 [6].
Fig. 1 shows the major dimensions of HUBO.

II. HUBO CONTROL DESIGN

This section will describe the particular software design which
has been (and is continuing to be) developed for the HUBO
platform. It will discuss the hierarchy of daemons, their role
in the operation of the robot, and finally how a user or
programmer can interact with the daemons as well as develop

2Drexel Autonomous Systems Lab: http://dasl.mem.drexel.edu/

Figure 2: Hubo KHR4 Main Body given in front, side, and cartesian views

4 Parts

This section will explain the main parts of the Jaemi Hubo KHR4. Please
note that the figures in this section will be used in other sections as references.

4.1 Overview

The Hubo KHR4 series is a 4” 3’ tall humanoid robot. Figure 2 shows the
Hubo KHR4 in the front, side and cartesian view points. This picture will
be used when describing each part in this section.

4.2 Motor Controller Locations

The motor controllers are located all over the KHR4’s body. Please see
Figure 3 for the locations of the motor controllers/drivers.

18

Fig. 1. HUBO2 Plus platform: 38 DOF, 130 cm tall full-size humanoid robot
weighing 37 kg.

daemons of their own (for purposes such as planning and
perception).

A. Daemon & Communication Structure

In this design, daemons are placed into a hierarchy based
on how critical or how low-level their functionality is, as
seen in Figure 2. The lower-level daemons run with a higher
process priority, ensuring that when they need to run, they
are not interrupted by a less important process, such as the
user interface. Each box in Figure 2 represents an independent
process, all of which are daemons running the background,
and each column represents a set of equal priority processes.

In this design, commands flow cleanly from the left-
most tier (planning and perception) to the right-most tier
(the hardware interface), and then feedback data flows back
over to all processes. Each arrow signifies an independent
Ach channel. Solid lines represent command channels while
the dotted lines represent a feedback channel. Notice that all
the dotted lines fork off of a single arrow; this intentionally
represents that all feedback is contained on a single channel
which all daemons read from simultaneously (except for the
CAN/Hardware Daemon which exclusively publishes to it).

The left-most arrow represents the user interface. This is
where the user sends high-level instructions or commands
into the system. These instructions are passed into the Plan-
ning Daemon which determines the how to fulfill the user’s
instructions. The Planning Daemon takes in pre-processed

2



Hardware 

Commands Hardware 

(CAN) 

Daemon 

Control 

Daemon 

Motor 

Command 

Channel 

Manipulation 

Daemon 

Balance 

Daemon 

Arm 

Control 

Channel 

Leg 

Control 

Channel 

Planning 

Daemon(s) 

Perception 

Daemon 

Manipulator 

Task 

Channel 

Locomotion 

Task 

Channel 

Perception 

State 

Channel 

User 

Interface 

Fig. 2. Daemon Communication Flow Chart

information from the Perception Daemon to aid its decision-
making. Once a plan is computed, the Planning Daemon begins
feeding commands into the Manipulation Daemon, which
monitors and controls HUBO’s arms and end effectors, and
the Balance Daemon, which performs balance and locomotion.
These two daemons determine what position, velocity, and
acceleration configurations are appropriate for the arms and
legs respectively. The motion parameters are then filtered into
the Control Daemon which calculates the motor commands
necessary to generate the desired positions, velocities, and
accelerations. These motor commands are sent into the CAN
Daemon (called CAN because the hardware communicates
using Controller Area Network). Finally, the CAN Daemon
reads state information from the motor controllers and on-
board sensors and publishes them to the State Ach Channel
which is read by all the other daemons.

All of these processes run concurrently, based on their
priority. They do not necessarily need to wait for data or signals
from other processes in order to perform their calculations or
send their signals. This is hugely beneficial because it means
that the performance of the daemons does not need to be stalled
by waiting for other components to respond. While the CAN
Daemon is sending/receiving data from the hardware, the other
daemons can be performing decision-making or dynamics
calculations. With a system like this, it would be feasible
for the Planning Daemon to begin planning for the next task
while the Manipulation and Balance Daemons are carrying
out the current plan. Finally, this multi-process division takes
advantage of HUBO’s multi-core CPU by performing multiple
computations simultaneously.

Along with the parallelization, the individual daemons do
not require commands on any regular basis in order to perform
their functions. The exact behavior of each daemon varies, but
in general the daemons are designed to carry out to completion
the last task given to them by their parent daemon. Specific
behaviors are discussed in the next subsection. Decoupling the
daemons from their parents and endowing each of them with a
degree of autonomy ensures that overall performance is never
held up by any single issue.

B. Specific Roles of Various Daemons

Presently, the bottom two tiers (Hardware Daemon and Control
Daemon) are fully developed and stable while the third tier
(Manipulation and Balance Daemons) are functional but un-
dergoing continued development. The left-most tier (Planning

and Perception) will be developed within upcoming projects.
It is also important to note that this whole design is extensible;
it is not limited solely to the daemons as described in Fig. 2.
More daemons or processes can be easily integrated into the
structure. This potential integration will be described in greater
detail in Section II-C.

1) CAN (Hardware) Daemon: The sensor and motor con-
troller boards in the HUBO platform all communicate using
a Controller Area Network (CAN) bus. The CAN Daemon is
responsible for taking the command data structures assembled
by other daemons and converting them into CAN frames to
be sent to the motor and sensor boards. The CAN Daemon is
also responsible for polling all the boards for state information,
such as encoder positions, motor current (ampere) values,
and sensor values (including force-torque and accelerometer
data). After grabbing the state information from the CAN
bus, the information is converted into data structures which
are convenient for other processes to utilize, and these data
structures are published to the State Ach channel. Along with
the latest state data, the CAN Daemon provides the data
with a timestamp. This timestamp allows the daemons to
synchronize their behavior with the CAN daemon (and each
other) if desired. It also provides a clear indication of the
time lapse between instances of state data so that velocity
(and any other time derivatives) can be calculated reliably.
The daemon operates in real-time to allow Phase-Locked Loop
communication over CAN. It sends commands at a fixed
frequency to ensure that the CAN bus bandwidth is never
saturated. This fixed frequency also allows other daemons or
applications to operate at any frequency without affecting the
rate of communication over CAN.

2) Control Daemon: Presently, the motor control boards on
HUBO only offer position control. The position control gains
used on the boards are extremely high due to Dr. Jun-ho Oh’s
design philosophy for HUBO. Specifically, the philosophy is
that if the hardware does precisely as it is instructed, then no
further feedback control system is necessary in the software
[5]. However, these extremely high gains can result in violent
behavior if position commands are not sent to the boards
very carefully. The Control Daemon ensures that the values
sent to all of the motor controller boards are always sane.
Motor control commands are not allowed to go to the boards
without passing through the Control Daemon first. The Control
Daemon has three particular modes:

Position Control – For each joint, the Control Daemon is

3



sent a desired position (in jointspace), a nominal velocity, and a
nominal acceleration. It is then the responsibility of the Control
Daemon to smoothly move the joint from its current position
and velocity to whatever desired position was requested. In
particular, “smoothly” means that it must accomplish the task
without ever exceeding the nominal velocity or the nominal
acceleration. This generates a position trajectory like what is
seen in Fig. 3 where each end of the trajectory is smoothed
out parabolically. Note that there is an intentional deceleration
prior to reaching the target position in order to prevent a sudden
stop. The command containing the desired position only needs
to be sent to the Control Daemon once and it will be carried
all the way through to completion. But at the same time, it
does not hurt in any way to repeatedly send the same control
command to the Control Daemon. Rapidly sending alternating
commands which strongly oppose each other (for example,
fluctuating rapidly between -2rad and +2rad) will simply
cause the joint to move back and forth without ever violating
the velocity and acceleration limits. In other words, it will
not shake or do anything violent, no matter how extreme the
position commands are.

Fig. 3. Parabolic Smoothing of a Position Command

Velocity Control – For each joint, the Control Daemon is
sent a desired velocity (in jointspace) and a nominal acceler-
ation. The Control Daemon will then drive the joint at the
desired velocity without ever exceeding the nominal accel-
eration. In general, this will generate a trapezoidal velocity
trajectory. A key difference between velocity control mode
and position control mode is that, unlike position control, the
velocity control mode requires periodic updates on what the
velocity should be or else the Control Daemon will decelerate
the joints back down to 0. The time waited by the Control
Daemon before decelerating is a paremeter which can be set
by the user or by whichever process is sending the velocity
control command. This behavior is so that if a parent program
using velocity control is interrupted or crashes, the Control
Daemon will not blindly continue to push the joint forward.

Passthrough Control – Use of this control mode is generally
discouraged. In this mode, the Control Daemon will simply
pass any control commands straight through to the CAN
Daemon without filtering or monitoring them. The use of this

mode is in order to accomodate outside processes which need
to perform joint control without being subjected to any filter.
If a particular control algorithm needs to send motor reference
position commands without those commands being tampered
with, they would use the passthrough mode.

3) Manipulator Daemon: This daemon takes end effector
position and orientation commands and uses analytical inverse
kinematics to generate the required joint angle and velocity
configurations. These desired joint angle positions are then sent
into the Control Daemon. In our current setup, the end effector
commands are being streamed into the manipulator daemon
from a Polhemus:FASTRAK sensor suite which follows the
position and orientation of a human hand. This allows us to
teleoperate the robot’s arms by simply holding a sensor in each
hand and having the robot mimic our movements.

4) Balance Daemon: This daemon uses IMU and force-
torque readings to maintain the robot’s balance at all times.
As development continues, this will progress into a dynamic
model-based controller. Moreover, it will ultimately be respon-
sible for locomotion and controlling the gait of HUBO. It will
receive commands like a state machine, which means there will
be a finite enumerated list of commands (such as “step for-
ward”, “step backward”, “turn by x degrees”) and the Balance
Daemon will follow these commands in an intelligent way,
ignoring commands which cannot be performed or delaying
them until they can be performed.

5) Other Daemons: In general, any other daemons will
be used for decision-making in some capacity, whether they
are performing perception, planning, or optimization. These
are high-level daemons which are not considered critical to
the safety of the robot (although they may be critical to the
successful execution of the robot’s task). They will commu-
nicate their plans to the Manipulation and Balance Daemon,
and then those daemons will be responsible for converting the
high-level demands into lower-level control commands. These
daemons have no requirement to run in real-time. For example,
a walking trajectory planner currently exists which uses ZMP
Preview Control to generate a full body trajectory. It runs at
a much lower frequency than the balance daemon and then
periodically sends a chunk of trajectory to the real-time process
which is responsible for running and maintaining the plan in
real-time.

C. Application Programming Interface

A design such as this is not as useful if it is too burdensome to
interface with. If a programmer needs to spend an inordinate
amount of time dealing with “housekeeping” (such as orga-
nizing a data structure, consciously sending off packages, or
parsing incoming messages) it distracts from the programmer’s
real task of implementing a good algorithm.

The Ach suite comes with a library which makes these
tasks straightforward. A simple function ach put will send
off a message to a channel, while ach get will retrieve data
from a channel. The messages are sent as raw byte arrays.
Our software for HUBO uses C structures for messages, so no
additional parsing or serialization/deserialization is necessary.

The software architecture which has been developed for
HUBO takes this a step further. All of the “housekeeping”

4



is taken care of within a shared library which wraps all
functionality up inside of a single C++ class. The constructor
for this class automatically opens up all necessary commu-
nication channels, and member functions of the class handle
all message and error handling. There are functions which
have intuitive names (such as “setLeftArmAngles”) which take
care of all data structure formatting and message sending.
This approach enables the user to focus solely on algorithm
design without needing to worry about the gritty details of
implementation.

III. RESULTS

Here we will outline the results observed from using this
design over repetitive trials. The goal of this section is to
demonstrate – beyond mere postulation – the effectiveness of
this design. First we will benchmark latencies in the system.
Then we will list the observed behavior when individual
components are forced to fail.

A. Benchmarking

In order to gauge the response frequency, commands from the
balance daemon were tracked to see how long the following
process took: 1) State data sent from Hardware Daemon, 2)
Data processed by Balance Daemon, 3) Control Command
sent by Balance Daemon, 4) Control command processed by
Control Daemon, 5) Motor motor command sent to Hardware
Daemon, 6) Motor command delivered to hardware, 7) New
state data acquired by Hardware Daemon.

This time represents an upper bound on how much latency
exists between the acquisition of data and the response of the
system. A more exact measure of the latency could have been
measured, but this would have required double the amount of
data logging, which is a computationally expensive procedure.
In fact, the four spikes seen in Fig. 4 are likely attributable to
the logging.

Fig. 4. Latency of commands travelling from Balance through Hardware
Daemon

The upper bound on the latency hovers close to 0.02sec.
The reason for this is the Hardware Daemon operates at 100

Hz3, meaning it completes a single loop roughly every 0.01sec.
At the end of its loop, it sends off the latest state data. At
the start of its loop, it grabs the latest commands which were
sent out by the Control Daemon. These latest commands will
be based on the state information (and timestamp) sent out
by the loop before the last one, because the latest control
commands were being computed while the Hardware Daemon
was handling the CAN communication in the previous loop.
What this amounts to is that control computations are being
performed while CAN communication is happening, and those
control computations will typically be available for the Hard-
ware Daemon to send out by the time it begins its next loop.

B. Robustness to Software Errors

In the interest of having prior knowledge of what would happen
if any component in the design were to fail, experiments were
run in which each daemon was forced to quit via the operating
system terminal during operation. This was performed multiple
times while standing still and while in motion with consistent
results, and those results are listed here. These describe the
behavior which would be exhibited if each component were to
fail unexpectedly.

1) CAN (Hardware) Daemon: The Hardware Daemon is
certainly the most fundamental for maintaining control over
the system. However, since the motor controller boards utilize
position feedback, cutting off communication with them will
simply result in the boards locking in place. If none of HUBO’s
joints are moving when the Hardware Daemon is cut off, the
boards will simply no longer respond to any further commands
until the Hardware Daemon is restarted. If a joint is in motion
when the Hardware Daemon is cut off, any moving joints will
very suddenly stop.

2) Control Daemon: The physical result of the Control
Daemon being cut off is identical to the result of the Hardware
Daemon being cut off. The reason for this is that, either
way, the boards will not receive any new reference position
commands. Internally, however, all the other processes will
continue to be updated about the states of HUBO, and therefore
they can continue to monitor the state and condition of the
hardware. The Control Daemon can simply be restarted to
resume activity.

3) Balance Daemon: Balance is performed using velocity
control on the leg joints. Currently they have a time-out delay
of 0.5 seconds. This means that if a new velocity control
command is not sent within a half-second, the Control Daemon
will smoothly wind the velocity of all the joints down to
zero, ultimately freezing them in place until a new velocity
command is received. Therefore, if the Balance Daemon is
killed prematurely, the Control Daemon will continue driving
the joints at the last velocity command it received until 0.5
seconds have elapsed; then it will wind down all the leg
velocities to zero. If the robot is in a stable position as the leg
velocities get wound down, then the robot will remain upright.

4) Manipulator Daemon: Manipulation is performed using
position trajectories. In particular, the Manipulator Daemon
sends “desired location” commands to the Control Daemon

3100 Hz is dictated by the need to not saturate the CAN bus. However, 100
Hz is not an upper-limit, and this might be increased in future operations on
HUBO.

5



Failed Component Stability of Motion
Static Quasi-Static Dynamic

Hardware No Effect Sudden Stop in All Joints Falls over
Control No Effect Sudden Stop in All Joints Falls over
Balance No Effect Smooth Stop in Legs Falls over
Manipulator No Effect Smooth Stop in Arms Smooth Stop in Arms
Planner No Effect Finishes last plan provided Finishes last plan provided
Perception No Effect Finishes last plan provided Finishes last plan provided

TABLE I. FAILURE MODES OF DIFFERENT COMPONENETS

which generates a smooth trajectory from the current joint
locations to the desired location. Therefore, when the Manip-
ulator Daemon is forced to crash, the Control Daemon will
ensure that the arms simply arrive at the last position requested
by the Manipulator Daemon. Moreover, the Control Daemon
is aware of all joint limits, so it will never try to send a joint
past its limit.

5) Planning & Higher-level Daemons: Presently only a
walking trajectory planner exists, but its failure mode would be
reflective of all other high level daemons (such as a perception
daemon or a manipulator planner daemon). The trajectory
planner daemon is designed to always send segments of a
trajectory plan which ends in a stable configuration. Therefore,
if it is cut off, the Balance Daemon will continue its operation
up to this stable configuration and then wait until a new
command is provided. In general, the balance and manipulator
daemons have default behaviors to fall back on in the event
that their pipeline to the higher level daemons is interrupted.

A chart of these results is presented in Table 1. In all
of these circumstances, each daemon can be restarted and
resume its task seamlessly. There are only three daemons for
which crashing would pose a potential hazard to the robot: the
Balance, Control, and Hardware Daemon. In theory, if one of
these crashed while the robot was in a dynamically unstable
configuration, the robot would fall over. Because of this, a
great deal of emphasis is placed on the consistency, stability,
and reliability of these three daemons. An advantage of having
the distributed architecture is that development efforts can be
fine-tuned to the specific components which are most critical.

IV. CONCLUSION

We have presented the outline of a general software archi-
tecture for real-time robot planning and control which was
designed with emphasis on safety and modularity. This archi-
tecture is meant to be easily extendible to many platforms,
though it is particularly well suited for humanoid robots or
other platforms where errors or unexpected behaviors are
dangerous. A particular implementation of this architecture
for a HUBO2 Plus robot was discussed and analyzed to
demonstrate the practical value of the architecture.

This multi-process architecture offers several key advan-
tages over a single-process approach: 1) Future development
does not need to be crammed into prior development. Instead,
a new process can be developed which simply communicates
with previously developed processes. So a planning algorithm
does not need to be fit inside of a control system or vice-versa.
They can exist and be developed independently. 2) Different
functionalities do not have critical dependencies on each other.
For example, if a planner experiences a segmentation fault
or crashes for any other reason, the balancing and control

processes can remain in-tact and prevent the robot from falling
over or being damaged. 3) Latency in any single component
does not affect the performance of any other component of
the software. In general, the individual processes do not have
to wait for any higher level process in order to perform
their tasks, except when waiting for instructions to begin
performing a new task. 4) The operating system is able to
take full advantage of modern multi-core processor hardware.
Multi-threaded processes have the benefit of utilizing multi-
core processing, however they still suffer from the first two
disadvantages mentioned above: potentially bloated codebases
and vulnerability to instant irreversible critical failure.

ACKNOWLEDGMENT

The authors thank Peter Vieira and Rowland O’Flaherty for
their extensive efforts in operating HUBO and running trials.
This work was supported in part by DARPA #N65236-12-
1-1005: DARPA Robotics Challenge and NSF CNS-0960061
MRI-R2: Unifying Humanoids Research.

REFERENCES

[1] N. Dantam and M.Stilman. Robust and efficient Communication for real-
time multi-process robot software. International Conference on Humanoid
Robotics (Humanoids). 2012.

[2] Morgan Quigley, Brian Gerkey, Ken Conley, Josh Faust, Tully Foote,
Jeremy Leibs, Eric Berger, Rob Wheeler, and Andrew Ng. Ros: an
open-source robot operating system. In Proc. of the IEEE Intl. Conf. on
Robotics and Automation (ICRA) Workshop on Open Source Robotics,
Kobe, Japan, May 2009.

[3] H. Bruyninckx, P. Soetens, and B. Koninckx. The real-time motion
control core of the orocos project. In Robotics and Automation, 2003.
Proceedings. ICRA’03. IEEE International Conference on, volume 2,
pages 2766–2771. IEEE, 2003.

[4] C.E. Agüero, J.M. Cañas, F. Martı́n, and E. Perdices. Behavior-based
iterative component architecture for soccer applications with the nao
humanoid. In 5th Workshop on Humanoids Soccer Robots. Nashville,
TN, USA, 2010.

[5] Baek-Kyu Cho and Sang-Sin Park and Jun-ho Oh. Controllers for run-
ning in the humanoid robot, HUBO. Humanoid Robots, 2009. Humanoids
2009. 9th IEEE-RAS International Conference on, Dec. 2009.

[6] Lofaro, Daniel M. and Ellenberg, Robert and Oh, Paul and Oh, Jun-
ho Humanoid throwing: Design of collision-free trajectories with sparse
reachable maps Intelligent Robots and Systems (IROS), 2012 IEEE/RSJ
International Conference on Oct. 2012.

6


