
Intelligent Robots and Systems, October 2012

Linguistic Transfer of Human Assembly Tasks to Robots

Neil Dantam Irfan Essa Mike Stilman

Abstract— We demonstrate the automatic transfer of an
assembly task from human to robot. This work extends efforts
showing the utility of linguistic models in verifiable robot
control policies by now performing real visual analysis of
human demonstrations to automatically extract a policy for the
task. This method tokenizes each human demonstration into a
sequence of object connection symbols, then transforms the set
of sequences from all demonstrations into an automaton, which
represents the task-language for assembling a desired object.
Finally, we combine this assembly automaton with a kinematic
model of a robot arm to reproduce the demonstrated task.

I. INTRODUCTION

Hybrid system models combining formal language and
differential equations are an effective and powerful approach
to verify and control robotic systems. However, the devel-
opment of these formal models is usually a manual process
requiring both mathematical and domain-specific expertise.
It would be more desirable to automate the development
of formal tools for robotic systems. Using a linguistic
representation of task decomposition and robot action, we
demonstrate the automatic transfer of an assembly task from
human to robot through a grammar suitable for both formal
verification and efficient execution.

In previous work, we developed the Motion Grammar
(MG) to represent complex robot tasks such as interactive
Human-Robot Chess [1] as hybrid controllers based entirely
on parsing a Context-Free Grammar. We also controlled a
robot arm with MG for the game Yamakuzushi and formally
explored correctness and completeness as they relate to a
grammar-based controller [2]. Furthermore, we introduced a
basic calculus of transformation rules that operate on both
the syntax (discrete productions) and semantics (continuous
control laws) of a Motion Grammar [3]. Our prior work
builds on grammar-based methods widely employed to con-
trol robots and other dynamical systems [4], [5], [6], [7], [8].
The primary challenge for all linguistic approaches to control
is the development of suitable models and specifications for
the system, particularly for complex and varied robot tasks.

The contribution of this paper is a demonstration of
automatic transfer of an assembly task from human to robot
using a verifiable model that represents the control policy for
the task. This demonstration system is a novel integration of
techniques from computer vision, optimization, and language
theory to go from physical human activity to syntactic task
specification, Fig. 1. We operate in the application domain of
assembly using a construction set of small wooden objects. In
this domain, we convert a human demonstration to symbolic

The authors are with the Center for Robotics and Intelligent
Machines at the Georgia Institute of Technology, Atlanta, GA
30332, USA. ntd@gatech.edu, irfan@cc.gatech.edu,
mstilman@cc.gatech.edu. This work is supported by NSF grants
CNS1146352 and CNS1059362.

(a) Human Demonstration

RGBD VideoSegment and Cluster

Recognize Objects Infer Structure Connection Events

Assembly StringsAssembly Grammar

(b) Inference Pipeline Stages

(c) Robot Assembly

Fig. 1. Automatic Transfer of Human Demonstration to Robot Assembly.

form, infer a syntactic model from a set of demonstrations,
and simulate a robot reproducing the demonstrated task.

II. RELATED WORK

We briefly summarize work in the areas of hybrid controls,
grammatical inference, learning from demonstration, and
robotic assembly, as it relates here. In addition, we give a
consolidated explanation of the existing algorithms applied
for this approach in [9].

Hybrid Control is an active research area, exploring sys-
tems with both discrete, event-driven, dynamics and continu-
ous, time-driven, dynamics. [10] first applied Language and
Automata Theory [11] to Discrete Event Systems. Hybrid
Automata typically combine a Finite State Machine (FSM)
with differential equations associated with each FSM state.
This is a widely studied and utilized model [4], [5], [6],
[7], [8]. In this paper, we model hybrid systems using
the Motion Grammar which represents continuous dynamics
with differential equations and discrete dynamics using a
Context-Free Grammar (CFG).

There are numerous methods and domain-specific lan-
guages for the specification of robot tasks. The Subsumption
Architecture specifies a task policy with a set of parallelly-
executing Finite State Machines [12]. [13] presents a domain-
specific language for robot manipulation tasks. [14] describes
a type-safe, Turing-complete robot programming language.
[15] uses an English-like syntax for Linear Temporal Logic
in mobile robot motion planning. Unlike these efforts, we

1

focus on the automatic inference of robot task specifications
from human demonstration.

Language models have previously been applied to activity
recognition. Syntactic pattern recognition, described by [16],
uses a grammar to parse and classify a tokenized system,
as opposed to classification techniques such as SVMs that
directly divide a continuous feature space. The syntactic
approach is applied to human activity recognition by [17],
[18], [19]. Our goal here is not to just recognize or classify
an activity based on an existing grammar, but to observe
an activity and produce the grammar describing it, and then
transfer that grammar to a robot for execution.

Grammatical inference is an ongoing field of research fo-
cused on developing language models from example strings
and learner queries [20]. While there are a number of positive
results in the field, trivial grammatical inference problems
are often undecidable. For example, the class of regular
languages cannot be learned solely from positive examples.
To develop a workable system given these challenges, we
initially focus in inferring grammars for finite languages.
However, our overall approach is also amenable to more
powerful forms of inference such as informed learning.

There are numerous other approaches to learning from
demonstration for robotic systems [21], [22]. Many ap-
proaches focus on learning continuous trajectories [23],
while in this work, we focus on a symbolic abstraction of
a specific task. Other symbolic learning approaches include
[24] which learns goal configurations for sets of objects and
[25] which learns a logical model for a STRIPS planner
from multiple human demonstrations. Our work differs from
these other methods by producing a syntactic task model
which, combined with the semantics for a robot, represents
a hybrid dynamical control policy that is formally verifiable
and efficiently executable.

There are numerous other approaches for robot assembly
tasks [26], [27]. Rather than treat the assembly task in
isolation, our goal is to infer from human demonstration a
verifiable and executable policy in the form of a grammar to
control a robot performing this assembly task.

III. LANGUAGE FOR ROBOT ASSEMBLY

To explore the automatic generation of grammars for
robots, we focus on the domain of object assembly. Our
system observes human demonstrations of assembly for some
desired object, and from those demonstrations automatically
constructs a formal grammar that represents the same task.
We first review modeling robots in formal language, then
describe our language for assembly tasks.

A. Robotic Systems as Language: The Motion Grammar

We can view both humans and robots as hybrid sys-
tems containing both continuous and discrete elements. We
can model continuous system dynamics with differential
equations and discrete dynamics with formal language. A
formal language is a set of strings. Strings are sequences of
atomic symbols, which we use to describe discrete events,
predicates, and actions within our system. Grammars define
formal languages. This combined hybrid model defines the

Motion Parser

ζ0 ζ1 . . . ζk−1︸ ︷︷ ︸
history

ζk ζk+1 . . . ζn︸ ︷︷ ︸
future

input tape

Robot
η(z)ζ

u

Fig. 2. Operation of the Motion Grammar.

full system dynamics and represents a policy to control the
system.

The Motion Grammar (MG) [1], [2], [3] is a model for
hybrid systems. While our approach to grammar inference is
widely applicable to any linguistic hybrid control method,
we focus on the MG to provide a clear illustration. The
MG combines differential equations for continuous dynamics
with a Context-Free grammar for discrete dynamics. This
model lets us formally describe complicated robotic systems
such as the physical human-robot chess match in [1] and
also gives us guarantees on both efficiency and verifiability
of our control policy [2]. We now investigate automating the
generation of the MG itself.

Fig. 2 illustrates the operation of the Motion Grammar.
The sensor output z is discretized into a stream of tokens ζ
for the parser to read. The token type ζ is used to pick the
correct grammatical production to expand at that particular
step, and the semantic rule for that production uses the
continuous value z to generate the input u. Thus, the Motion
Grammar represents the language of the robotic system.

We represent language syntax in this paper using the con-
ventional Backus-Naur Form (BNF) for Context-Free Gram-
mars and also with state machines and Regular Expressions.
A BNF grammar is written as a set of recursive productions
A → X1 . . . Xn, where A is some nonterminal symbol
that expands to the sequence of terminals and nonterminals
X1 . . . Xn. Regular expressions define languages based on
the operators concatenation, union, and kleene-closure. A
thorough coverage of these language representations is given
in [11].

B. Hierarchical Decomposition of Tasks and Symbols
While formal language defines tokens as atomic sym-

bols, these tokens are in fact abstractions of underlying
phenomena. Consider the tokens of natural language: words
may exist as vibrations in air, ink on paper, or magnetic
transitions on a metal disk. Yet, all these representations
define the same symbol. In formal grammars, this hierarchy
is explicit through the relationship between nonterminal and
terminal symbols. Terminal symbols are atomic. Nontermi-
nals represent a set of strings of symbols, in essence a
language of their own. Whenever it is necessary to deepen
the abstraction for some terminal symbol, α, we can convert
α to a nonterminal and define a new set of strings that
α may expand to. We have used this approach for the
manual construction of MG since it facilitates hierarchical
task decomposition. For automatic grammar generation, we
can again use this hierarchy of symbols to translate the task-
appropriate symbols from humans to robots even though at
the atomic level, human and robot actions are quite different.

(a) Constr. Kit (b) Point Cloud (c) Segmentation/Clustering

Fig. 3. Experimental Setup and Kinect Data

(a) Assembly

screw

screwscrew

bar bar

bar

0

00

0

1

0

1

0 1

(b) Connection Graph

Fig. 4. Connection Graph for an object assembly.

C. Experimental Setup

Our experimental setup consists of an assembly kit of
wooden pieces, a Kinect RGBD camera, and a simulated
Schunk LWA3 7-DOF robot arm with Schunk SDH 7-DOF
dexterous hand. From a physical human demonstration, we
infer the control policy for the task, and then implement
that policy on the simulated Schunk robot. To capture the
demonstration, the Kinect sensor is mounted above a table
to observe a human performing the assembly task. The
assembly pieces, Fig. 3(a), come from a Melissa & Doug
brand wooden construction set. The only modification we
make to the pieces is to attach a brightly colored dot to the
end of screws. This simplifies distinguishing the screw from
an attached bar in the Kinect image which has a limited
resolution of 640 × 480 pixels. To illustrate our inference
pipeline, we will show each of the steps required to build
the simple assembly in Fig. 4(a). After inferring the policy
from human demonstration, we simulate this policy with a
kinematic model of the Schunk robot and then display the
results, Fig. 1(c), with the Peekabot visualization tool.

D. Assembly Language

In an object assembly, the connections between objects
form a graph. In the simple case, objects are the graph nodes
and connections between objects are the edges. However,
we can make this model more precise by accounting for
the multiple connection points on objects. To do this, we
introduce additional nodes for these connection points. Each
object node has edges to each of its connection point nodes.
Each connection in the assembly is represented by an edge
between the two graph nodes for the connection. This type
of graph is shown in Fig. 4.

From the representation in Fig. 4, we can produce an
appropriate set of event symbols. The meaningful events
of the assembly domain are when the connection graph is
modified by connecting a new object to the assembly or when
creating an additional connection between objects already
part of the assembly. This event is represented as the tuple
oi × cj × ok × c`, where oα is some object and cβ is the

connection point on that object. In our figures, we write these
symbols as “p.q-r→x.y-z” where p is the type of object oi,
q is the object number of oi, p.q is then oi, r is cj , x is
the object type of ok, y is the object number of ok, x.y is
then ok, and z is c`. A sequence of these connection symbols
represents the full construction of the assembly.

The language over these assembly symbols is a syn-
tactic model of the assembly task policy. Each string in
the language is a plan to assemble the desired object. In
this language, the task is abstracted to the level where we
can transfer it from human to robot. By then combining
this assembly language with the continuous semantics and
lower level abstractions for our robot, we produce a Motion
Grammar representing the hybrid dynamical control policy
for the robot assembly task.

IV. HUMAN ACTIVITY TO EVENT STRING

The first step in our system for automatically generating
motion grammars is converting a human demonstration of
the desired task, assembling an object, into a string of the
connection events that the human performs. Given multiple
example strings, we can then infer the Motion Grammar for
the robot.

A. Image Segmentation and Clustering
First, we segment the RGBD image to identify the clusters

representing objects and partial assemblies. Since the table is
the largest feature in the image, we can robustly fit a plane
to the table using RANSAC. For large objects, the height
of each point above the table segments the object from the
table. However, because some of our objects are within the
depth sensing error of the Kinect, we cannot use the depth
information alone. Instead, we combine the depth and color
information to perform the segmentation.

We perform segmentation by computing the Mahalanobis
distance Dm of each point in the space of height above
table z, hue h, and saturation s. This approach assumes a
uniformly colored table, which is appropriate in our setup.
To approximate mean and variance of h and s, we iteratively
compute these values for points on the table according to z,
then reject outliers. Then, with the resulting mean and vari-
ance for the space, we compute the Mahalanobis distance for
each point in the image using Dm =

√
(x− µ)E−1(x− µ),

where x = [z h s]T , µ is the mean of x, and E is a weight
matrix.

All points with both distance Dm above a threshold and
with z above the table are taken as part of objects or
assemblies. Then, these points are clustered according to
Euclidean distance (Fig. 3(c)).

B. Object Recognition and Tracking
The next step is to recognize the objects that form each

cluster and to track the objects across subsequent images.
Since we have a small, fixed set of objects, we can recognize
these objects by template matching in the RGB (sans D) im-
age, Fig. 5(a). However, the tracking problem is complicated
by two factors. First, many of our objects look identical so we
cannot independently track them across subsequent frames.
Second, because a human is moving the objects with his

(a) First Image (b) Second Image

Fig. 5. Recognized and labeled objects. Specific objects are tracked across
subsequent images and objects combined into one cluster are grouped.

or her hands, tracking is only relevant when objects are
occluded. We handle these issues by assuming that most
of the objects in frame are stationary, which is appropriate
given that the human has only two hands to move objects.
From this assumption, we convert object tracking to the
Assignment Problem.

The Assignment Problem is an optimization problem that
consists of finding the minimum cost matching between two
sets, A and B, where the distances between members of A
and B are known. Several subtasks in our inference pipeline
are instances of this problem.

To convert object tracking to the assignment problem, we
represent the point clusters in the initial frame as set A and
in the subsequent frame as set B. The distance d(a, b) is
then the Euclidean distance between the centroids of the two
clusters in each frame, d(a, b) =

√
xTa xb. We can then solve

this Assignment Problem using the Hungarian Algorithm,
enabling us to track motion when multiple identical objects
are moved without crossing.

By recognizing objects and tracking them across frames,
we can determine when an object is added to an assembly,
Fig. 5(b). In the event tuple, (oi, cj , ok, c`), this gives us
object oi. The next step is to determine which other object
oi is connected to and how these two objects are connected.

C. Structure Recognition

To identify the precise connections between objects in an
assembly, we first locate the individual objects within that
assembly. Our system locates the bars and screws and then
infers the connections between them.

We locate the screws in the assembly using template
matching. The bars are located by iteratively fitting lines and
clustering points to the closest lines. The resulting lines are
shown in Fig. 6(a).

Now that we have the locations of a number of identical
bars and screws, we track the specific object for each located
element. By assuming that the elements of the assembly
are mostly stationary between frames, this becomes another
instance of the assignment problem. The first set A is the
located objects from the previous frame and the second set
B is the elements in the current frame. Distance between sets
is Euclidean distance between object positions, d =

√
xTx.

Solving this assignment problem gives the specific object for
each located element.

Having located the specific objects in the assembly, we
now infer the connections between them. To do this, we
assume that screws and bars can only connect at fixed

(a) Lines (b) Structure

Fig. 6. Inferred structure of the object assembly. Segmented points are
iteratively clustered and line fit.

Fig. 7. Each row is a demonstration sequence for the example object.

locations on the bar, which is true for our construction set.
Then we identify the connections with another assignment
problem. The first set is the screws in the assembly. The
second set is the connection points on the bars. Solving
this gives us a connection for each screw and a single bar.
To identify which screws connect multiple bars, we first
identify the intersections between the lines for each bar.
If that intersection goes through a screw, then that screw
must connect the intersecting bars. Thus, we identify all
connections between screws and bars in the assembly.

D. Symbol Generation
Given the connection graph at each frame, we can now ab-

stract the demonstration to a sequence of symbols. Whenever
the connection graph changes between subsequent frames,
we add a new symbol representing that change to the se-
quence. Since our assemblies contain many identical objects,
we also renumber the objects in the order they are added
to the assembly. Some assembly strings are shown in Fig.
8. Thus, we abstract the human demonstration of assembly
construction to a sequence of object connections which we
use to infer a motion grammar for the robot to repeat the
task.

V. EVENT STRINGS TO ROBOT GRAMMAR

Now that we have reduced the human demonstrations to an
initial symbolic abstraction, we can transform this abstraction
into a controller for the robot. First, we use the example
strings to infer a syntactic model of the assembly task. Then,
we combine the syntax of this assembly language with the

“1.0-0→0.0-0” “1.0-0→0.1-0” “1.1-0→0.0-1” “1.2-0→0.1-1” “1.1-0→0.2-0” “1.2-0→0.2-1”

“1.0-0→0.0-0” “1.1-0→0.0-1” “1.2-0→0.1-0” “1.0-0→0.1-1” “1.1-0→0.2-0” “1.2-0→0.2-1”

“1.0-0→0.0-0” “1.1-0→0.0-1” “1.0-0→0.1-0” “1.1-0→0.2-0” “1.2-0→0.1-1” “1.2-0→0.2-1”

Fig. 8. Generated strings from demonstrations, indicating the sequence of
object connections. A connection between screw i and bar k at bar location
` is “1.i-0→ 0.k-`.”

union

concatenation

concatenation

concatenation

“1.0-0→0.0-0” “1.0-0→0.1-0” “1.1-0→0.0-1” “1.2-0→0.1-1” “1.1-0→0.2-0” “1.2-0→0.2-1”

“1.0-0→0.0-0” “1.1-0→0.0-1” “1.2-0→0.1-0” “1.0-0→0.1-1” “1.1-0→0.2-0” “1.2-0→0.2-1”

“1.0-0→0.0-0” “1.1-0→0.0-1” “1.0-0→0.1-0” “1.1-0→0.2-0” “1.2-0→0.1-1” “1.2-0→0.2-1”

Fig. 9. Regular Expression parse tree for Assembly Task.

1.0-0→0.0-0

1.2-0→0.2-1

1.1-0→0.2-0

1.0-0→0.1-0

1.1-0→0.0-1 1.0-0→0.1-1

1.1-0→0.2-0

1.0-0→0.1-0 1.1-0→0.2-0

1.2-0→0.2-1
1.0-0→0.0-0

ε1.2-0→0.1-0

1.2-0→0.2-11.1-0→0.0-1 1.2-0→0.1-1
ε

1.1-0→0.0-1

1.0-0→0.0-0

1.2-0→0.1-1
ε10 118 9

6 74 52 3

1

1917 1815 16

0

14

12 13start

Fig. 10. Inferred NFA for Assembly Task. Language symbols are on edges;
state labels are arbitrary.

semantic model of our robot to produce an MG for the
demonstrated task.

A. Strings to Regular Expression

First, we convert the set of demonstration strings S to
a regular expression R. This is directly accomplished by
taking the union over all demonstration strings S. Thus,
R =

⋃
σ∈S σ. The language of this regular expression L(R)

is now a syntactic abstraction of all given demonstrations.
For our example assembly, we transform the strings in Fig.
8 to the regular expression in Fig. 9.

B. Regular Expression to Nondeterministic Finite Automaton

Next, we convert the regular expression R to a Nondeter-
ministic Finite Automaton (NFA) N using the McNaughton-
Yamada-Thompson (MYT) algorithm [28, p159]. Because
Regular Expressions and NFA are equivalent representations,
this transformation is always possible. The MYT algorithm
recursively walks the parse tree for the regular expression,
producing an NFA which represents the same language. The
resulting NFA for our example is shown in Fig. 10. Note that
this NFA follows the conventional form of language symbols
on edges and arbitrary state labels [11], [28].

C. Nondeterministic Finite Automaton to Minimum Deter-
ministic Finite Automaton

We now convert the assembly NFA to a minimum-state
DFA using Brzozowski’s algorithm [29]. Because NFA and
DFA are equivalent representations, this transformation is
always possible. Brzozowski’s algorithm produces a mini-
mum state DFA by reversing all connections in the FA and
converting the result to a DFA, then repeating that procedure
once more. The resulting DFA for assembly is shown in Fig.
11.

1.0-0→0.1-1

1.1-0→0.0-1

1.0-0→0.1-0

1.2-0→0.2-1

1.1-0→0.2-0

1.1-0→0.2-0
1.1-0→0.0-1

1.2-0→0.1-0
1.0-0→0.1-01.0-0→0.0-0

1.2-0→0.1-1

1.2-0→0.1-1

10
start 10

32

5
47

6
98

Fig. 11. Minimum State DFA for Assembly Task.

PRODUCTION SEMANTIC RULES

〈T1〉→bt0c 〈T2〉 xr = x0 + 1
2 ẍmt

2, ẋr = tẍm

〈T2〉→bt1c 〈T3〉 xr = x0 + 1
2 ẍmt

2
1 + ẋm(t− t1), ẋr = ẋm

〈T3〉→bt2c 〈T4〉 xr = xn − 1
2 ẍm(tn − t)2, ẋr = ẋm + ẍm(t2 − t)

〈T4〉→bt3c xr = xn, ẋr = 0

Fig. 12. Syntax-Directed Definition for trapezoidal velocity profiles. For
each trajectory stage Ti, the input q̇r is computed according to (2).

VI. SIMULATION OF ASSEMBLY

Finally, we combine the inferred syntactic abstraction of
the assembly DFA with the semantic model of the robot
to produce a control policy for object assembly. Then in
simulation, we apply this control policy to reenact the task.

A. Kinematic Model
For the continuous dynamics of manipulation, we use a

kinematic model of the robot. This model allows movement
of the end-effector in Cartesian coordinates using the Jaco-
bian pseudoinverse. To operate robustly near singularities, we
used the Damped Least Squares method, [30]. The Schunk
LWA3 has a redundant DOF, so to avoid both joint limits
and numerical drift, we use a null-space projection towards
the zero position of each joint. Our workspace control law
is then,

J
†
= J

T
(JJ

T
+ λI)

−1 (1)

q̇r = J
†
(ẋr −Kx(xr − x))−

(
J
†
J − I

)
Kqq (2)

where J is the Jacobian at the current configuration, λ is
the damping parameter, q is the current configuration, x is
the current Cartesian position, xr is the reference Cartesian
position, ẋr is the reference Cartesian velocity, Kx and Kq

are gain matrices, and q̇r is the input velocity given to the
robot. Orientation error between x and xr is computed using
difference of rotation vectors [31]. Thus, (2) allows us to
track a Cartesian trajectory.

We compute the Cartesian trajectories using a trapezoidal
velocity profile [31]. This is defined by the grammar in
Fig. 12. This grammar shows how the reference positions
are computed during each stage of the velocity profile. By
combining (2) and Fig. 12, we have a semantic model
permitting the robot to reach a desired Cartesian position
for manipulation.

B. Manipulation Grammar
Next, we employ the grammar of Fig. 12 to hierarchically

decompose the connection symbols from Fig. 11. This gram-
mar, shown in Fig. 13, will expand the connection symbols
〈oi, cj, ok, c`〉 to sequences of robot trajectories necessary to
perform the connection.

Note that to implement the assembly task, we must satisfy
the geometric constraints in addition to the ordering con-
straints expressed by the DFA. One could naı̈vely handle
these geometric constraints by initially placing objects ar-
bitrarily and then later repositioning – or dragging – the
object to satisfy the constraint. However, if we account
for the geometry in our language, we can minimize this
repositioning. Thus, we consider distances between pairwise
connections in our language as follows. Given two symbols
(oi, cj , ok, c`) and (om, cn, ok, cp), we observe that oi and
om are both connected to ok and thus their positions are

'

&

$

%

〈oi, cj, ok, c`〉 → b¬placed(oi)c 〈P(xi, xws)〉〈oi, cj, ok, c`〉
| bplaced(oi)c 〈P(xk, xi)〉

〈P〉 → 〈pick〉〈place〉
〈pick〉 → 〈move〉〈grasp〉
〈place〉 → 〈move〉〈ungrasp〉
〈move〉 → 〈T1〉 b|x− xr| < εc
〈grasp〉 → {close} b|x− xr| < εc

〈ungrasp〉 → {open} b|x− xr| < εc

Fig. 13. Pick and Place Grammar for Schunk LWA3 and SDH.

constrained by the distance between c` and cp, given as
xj − xn = x`− xp. When oi is already placed, we select an
xn to satisfy this constraint: xn = (xp − x`)− xj .

Now, we expand the grammar of Fig. 13 to make the
connection. First, if object on has not been placed, we place
it at position xws calculated according to the constraint.
Then, we pick ok and place it. The picking and placing
follow the trajectories of Fig. 12, and the robots grasps
by pinching the object between two fingers of the SDH.
Through the combination of this manipulation grammar
and the inferred assembly automaton of Fig. 11, the robot
reenacts the human demonstration, shown in both Fig. 1(c)
and the video accompanying this paper.

VII. CONCLUSION

We demonstrate the automatic transfer of an assembly
task from a human to a robot. This linguistic inference
pipeline discretizes the human demonstration into a sequence
of semantically relevant object connection actions. Then, it
infers a grammar from a set of those demonstrations which
represents a syntactic abstraction of the task. Finally, we
combine the syntax of the task language with the robot
semantics and show in simulation the robot performing
the demonstrated assembly task. This method simplifies the
construction of formal models for robot verification and
control, easing the way for building safer and more reliable
robots.

There are many avenues to build upon this work. We
will transfer the inferred grammar to a physical robot to
demonstrate the practical utility of this method beyond prior
applications of the Motion Grammar. In addition, we will
explore further tools for grammatical inference including
negative examples, inference of repetitions, and queries to the
instructor, in order to infer more complicated task languages
for larger assemblies. Probabilistic inference methods could
also help this system tolerate errors in the recognition stages.
Through this ongoing work, we hope to make it easy and
efficient to develop safe and reliable robots.

ACKNOWLEDGMENTS

Our thanks to Ana Huamán and John Turgeson for their
prior development of the 3D models for the Schunk robot
and wooden bar, respectively, used in our simulation.

REFERENCES

[1] N. Dantam, P. Kolhe, and M. Stilman. The motion grammar for
physical human-robot games. In ICRA. IEEE, 2011.

[2] N. Dantam and M. Stilman. The motion grammar: Linguistic planning
and control. In RSS. IEEE, 2011.

[3] N. Dantam and M. Stilman. The motion grammar calculus for context-
free hybrid systems. In ACC. IEEE, 2012.

[4] C.G. Cassandras and Stéphane Lafortune. Introduction to Discrete-
Event Systems. Springer, 2nd edition, 2008.

[5] D. Hristu-Varsakelis and W.S. Levine, editors. Handbook of Networked
and Embedded Control Systems. Birkhauser, 2005.

[6] J. Lygeros, K.H. Johansson, S.N. Simic, J. Zhang, and S.S. Sastry.
Dynamical properties of hybrid automata. Trans. on Automatic
Control, 48(1):2–17, 2003.

[7] T.A. Henzinger. The theory of hybrid automata. In Logic in Computer
Science, pages 278–292. IEEE, 1996.

[8] R. Alur, C. Courcoubetis, T. Henzinger, and P. Ho. Hybrid automata:
An algorithmic approach to the specification and verification of hybrid
systems. Hybrid systems, pages 209–229, 1993.

[9] N. Dantam, M. Stilman, and I. Essa. Algorithms for linguistic robot
policy inference from demonstration of assembly tasks. Technical Re-
port GT-GOLEM-2012-002, College of Computing, Georgia Institute
of Technology, 2012.

[10] P. J. Ramadge and W. M. Wonham. Supervisory control of a class
of discrete event processes. Analysis and Optimization of Systems,
25(1):206–230, January 1987.

[11] J.E. Hopcroft and J.D. Ullman. Introduction to Automata Theory,
Languages, and Computation. Addison Wesley, Reading, MA, 1979.

[12] R. Brooks. A robust layered control system for a mobile robot. IEEE
journal of robotics and automation, 2(1):14–23, 1986.

[13] T. Lozano-Pérez and R.A. Brooks. An approach to automatic robot
programming. Technical Report A.I. Memo 842, Massachusetts
Intitute of Technology, 1985.

[14] E. Klavins. A language for modeling and programming cooperative
control systems. In ICRA, volume 4, pages 3403–3410. IEEE; 1999,
2004.

[15] H. Kress-Gazit, G.E. Fainekos, and G.J. Pappas. Temporal-logic-
based reactive mission and motion planning. IEEE Trans. on Robotics,
25(6):1370–1381, 2009.

[16] K. Fu. Syntactic Pattern Recognition and Applications. Prentice-Hall,
1981.

[17] Y.A. Ivanov and A.F. Bobick. Recognition of visual activities and
interactions by stochastic parsing. IEEE Trans. on Pattern Analysis
and Machine Intelligence, 22(8):852–872, 2000.

[18] D. Minnen, I. Essa, and T. Starner. Expectation grammars: Leveraging
high-level expectations for activity recognition. In Computer Vision
and Pattern Recognition, volume 2, pages II–626. IEEE, 2003.

[19] D. Moore and I. Essa. Recognizing multitasked activities from
video using stochastic context-free grammar. In National Conf. on
Artificial Intelligence, pages 770–776. Menlo Park, CA; Cambridge,
MA; London; AAAI Press; MIT Press; 1999, 2002.

[20] Colin de la Higuera. Grammatical Inference. Cambridge University
Press, 2010.

[21] B.D. Argall, S. Chernova, M. Veloso, and B. Browning. A survey of
robot learning from demonstration. Robotics and Autonomous Systems,
57(5):469–483, 2009.

[22] A. Billard, S. Calinon, R. Dillmann, and S. Schaal. Handbook
of Robotics Chapter 59: Robot Programming by Demonstration.
Springer, 2007.

[23] S. Schaal, A. Ijspeert, and A. Billard. Computational approaches to
motor learning by imitation. Philosophical Transactions of the Royal
Society of London. Series B: Biological Sciences, 358(1431):537–547,
2003.

[24] C. Chao, M. Cakmak, and A.L. Thomaz. Towards grounding concepts
for transfer in goal learning from demonstration. In Intl. Conf. on
Development and Learning, 2011.

[25] S. Ekvall and D. Kragic. Learning task models from multiple human
demonstrations. In ROMAN, pages 358–363. IEEE, 2006.

[26] L.S.H. de Mello and S. Lee. Computer-aided mechanical assembly
planning, volume 148. Springer, 1991.

[27] R.E. Jones and R.H. Wilson. A survey of constraints in automated
assembly planning. In ICRA, volume 2, pages 1525–1532. IEEE, 1996.

[28] A. Aho, M. Lam, R. Sethi, and J. Ullman. Compilers: Principles,
Techniques, & Tools. Pearson, 2nd edition, 2007.

[29] J.A. Brzozowski. Canonical regular expressions and minimal state
graphs for definite events. Mathematical theory of Automata, 12:529–
561, 1962.

[30] Y. Nakamura and H. Hanafusa. Inverse kinematics solutions with
singularity robustness for robot manipulator control. Journal of
Dynamic Systems, Measurement, and Control, pages 163–171, 1986.

[31] J. Craig. Introduction to Robotics: Mechanics and Control. Pearson,
3rd edition, 2005.

	Introduction
	Related Work
	Language for Robot Assembly
	Robotic Systems as Language: The Motion Grammar
	Hierarchical Decomposition of Tasks and Symbols
	Experimental Setup
	Assembly Language

	Human Activity to Event String
	Image Segmentation and Clustering
	Object Recognition and Tracking
	Structure Recognition
	Symbol Generation

	Event Strings to Robot Grammar
	Strings to Regular Expression
	Regular Expression to Nondeterministic Finite Automaton
	Nondeterministic Finite Automaton to Minimum Deterministic Finite Automaton

	Simulation of Assembly
	Kinematic Model
	Manipulation Grammar

	Conclusion
	References

