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Abstract

Modern approaches for robot kinematics employ the product of exponentials formulation, represented using homogeneous

transformation matrices. Quaternions over dual numbers are an established alternative representation; however, their

use presents certain challenges: the dual quaternion exponential and logarithm contain a zero-angle singularity, and

many common operations are less efficient using dual quaternions than with matrices. We present a new derivation of

the dual quaternion exponential and logarithm that removes the singularity, we show an implicit representation of

dual quaternions offers analytical and empirical efficiency advantages compared to both matrices and explicit dual

quaternions, and we derive efficient dual quaternion forms of differential and inverse position kinematics. Analytically,

implicit dual quaternions are more compact and require fewer arithmetic instructions for common operations, including

chaining and exponentials. Empirically, we demonstrate a 30-40% speedup on forward kinematics and a 300-500%

speedup on inverse position kinematics. This work relates dual quaternions with modern exponential coordinates and

demonstrates that dual quaternions are a robust and efficient representation for robot kinematics.
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1 Introduction

Efficient geometric computations are important
for robot manipulation, 3D simulation, and other
areas that must represent the physical world. The
product of exponentials formulation, represented using
homogeneous transformation matrices, has emerged
as the conventional method for robot kinematics
(Brockett 1984; Lynch and Park 2017; Murray 1994).
For pure rotations, the unit quaternion has recently
resurged in popularity, particularly for applications in
graphics and estimation where the efficient interpolation
and normalization of quaternions is especially useful.
It is also possible to represent both rotation and
translation by extending the ordinary unit quaternion to
quaternions over dual numbers (Selig 2004; Study 1903).
Such dual quaternions retain the unit quaternions’
advantages of compactness and efficient normalization;
however, they also present challenges. Common
kinematics operations—constructing and chaining
transforms—require more arithmetic instructions using
dual quaternions than the equivalent transformation
matrix computation. Critically, the dual quaternion
exponential contains a small-angle singularity which we

must handle for numerical robustness. We address these
challenges and present a quaternion-based approach
with advantages for robot kinematics.

We present a new derivation of the dual number

quaternion exponential and logarithm that removes

the small-angle singularity, we show that the

implicit representation of a dual quaternion is

more computationally-efficient for robot kinematics

than homogeneous transformation matrices, and we

apply dual quaternion analysis to improve efficiency

of inverse position kinematics. The conventional
representation of exponential coordinates using the
homogeneous transformation matrix provides a baseline
for comparison (see Sec. 3). We begin with the
known forms of the ordinary quaternion exponential
and logarithm (see Sec. 4.1). Using dual number
arithmetic and quaternion trigonometry, we derive the
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Figure 1. The quaternion-imaginary-plane, containing axes
for the scalar w and vector (imaginary) magnitude |v|. The
angle φ and trigonometric ratios between the scalar and
vector parts guide our derivations.

exponential and logarithm for the dual quaternions and
rewrite factors to identify Taylor series that remove
the singularities (see Sec. 4.2). We extend this dual
quaternion exponential and logarithm to the implicit
representation of a dual quaternion as an ordinary
(rotation) quaternion and a translation vector, which
is more compact and computationally efficient than
explicit dual quaternions (see Sec. 4.3). Then, we
apply these quaternion forms to robot kinematics
(see Sec. 5). We demonstrate a 30%-40% empirical
performance gain over transformation matrices on
forward kinematics, and we achieve a 300-500% speedup
on inverse position kinematics formulated as sequential
quadratic programming (SQP). Finally, we discuss
issues of equivalence and efficiency between matrix
and quaternion representations (see Sec. 6). The work
presented in this paper is available as open source
software.∗

Quaternion-based forms present both challenges
and advantages. A common challenge raised with
quaternions is the difficulty of mentally visualizing
the four-dimensional space of ordinary quaternions—
or the eight-dimensional space of dual quaternions—
whereas vector and matrix representations have a
direct, 3-dimensional interpretation. Still, the planar
projection of quaternions (see Fig. 1) offers insight
into the relationship between quaternion components
and angles. More importantly, a growing body of
work continues to demonstrate that ordinary and dual

sin θ = θ − 1
6θ

3 + 1
120θ

5 + . . .

cos θ = 1− 1
2θ

2 + 1
24θ

4 + . . .
sin θ
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6θ
2 + 1

120θ
4 + . . .

θ
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4 + . . .

1−cos θ
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24θ

2 + 1
720θ

4 + . . .

Table 1. Taylor Series for θ → 0

quaternions offer computational advantages in a variety
of domains (Kavan et al. 2008; Markley and Mortari
2000; Shoemake 1985). The results of this paper are
in the same vein. We demonstrate a dual-quaternion-
based approach for kinematics that offers computational
advantages over matrices. We mitigate the challenge of
visualizing quaternions by using the relations of Fig. 1
in algebraic derivations.
A key technique in our derivations is to rewrite

factors with singularities into forms with well-defined
Taylor series which we evaluate near the singular point,
i.e., in the limit. Grassia (1998) applies this idea
to ordinary quaternions. For example, the ordinary
quaternion exponential contains the factor sin θ

θ , which
has a singularity at θ = 0. However, we use a Taylor
series to remove the singularity:

sin θ

θ
= 1− 1

6
θ2 +

1

120
θ4 − 1

5040
θ6 + . . .

lim
θ→0

sin θ

θ
= 1 . (1)

Near the singularity, we need only the initial
terms of the Taylor series to evaluate the factor to
within machine precision because the final terms will
be smaller than the precision of a floating point
number. For example, using IEEE 754 (ISO/IEC
JTC 1, Information Technology 2011) double precision
numbers, 1 + 10−16 = 1, so starting from a term of 1, we
may discard terms smaller than 10−16 without affecting
the final result. In (1), we have alternating positive and
negative terms of decreasing magnitude, so the error
after evaluating the first i terms is no greater than the
magnitude of term i+ 1. We need not evaluate any
additional terms when this error is less than machine
precision. Specifically, when θ4 is less than machine
precision, we may achieve minimum possible numerical
error using only the first two terms 1− 1

6θ
2.

We extend this Taylor series construction to the
dual quaternions, which have similar—though more
complicated—factors containing singularities. We use
quaternion trigonometry (see Fig. 1) to rewrite these

∗Software available at http://amino.dyalab.org
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Symbol Description
h Ordinary Quaternion

ı̂,̂,k̂ Quaternion basis elements
J Manipulator Jacobian
R Rotation Matrix
S Dual Quaternion
T Transformation Matrix
v, ~v Translation Vector
s ,c Sine and Cosine
û Joint / rotation axis
ε Dual number element
θ Rotation angle / configuration
θ Configuration Vector
φ Quaternion scalar-vector angle
ω Rotation vector/velocity
Ω Twist

Table 2. Summary of Symbols

factors into forms that are defined in the limit via Taylor
series. Table 1 lists several common Taylor series.

Note that the singularities in the logarithm and
exponential are different from kinematic singularities
that arise at certain manipulator configurations—e.g.,
with the arm fully outstretched—where the manipulator
loses the ability to instantaneously move in one or
more directions. Robust pseudoinverse methods address
kinematic singularities (Buss 2004), whereas we identify
factors and corresponding Taylor series to remove the
logarithm and exponential singularities.

We use the following notation. Bold uppercase R
denotes a matrix. Bold lowercase v denotes a vector.
An over-arrow ~v denotes a length-three vector over
the basis units ı̂, ̂, k̂. An over-hat û denotes a unit
vector (|u| = 1). An over-tilde ñ denotes a dual number
(ñ = nreal + ndualε). The lowercase script h denotes an
ordinary quaternion. The uppercase script S denotes a
dual quaternion (S = sreal + sdualε). We abbreviate sin
and cos with s and c. Table 2 summarizes the symbols
that we use.

An initial version of this work appeared in Dantam
(2018). This current paper extends the work to
differential and inverse kinematics and includes
additional mathematical details, performance tests, and
discussion.

2 Related Work

Brockett (1984) connected robot kinematics with
Lie groups expressed as matrix exponentials. This
product of exponentials formulation has become the
conventional approach for robot kinematics (Lynch and
Park 2017; Murray 1994). Our work presents a practical

connection between such exponential coordinates and
quaternion-based representations, and we show that a
quaternion-based approach offers efficiency advantages
compared to matrices.

Quaternions provide an alternative to matrix-based
geometric representations. Unit quaternions represent
rotation (Hamilton 1866) with four elements: a 3-
element vector and a scalar that together encode the
rotational axis, and the sine and cosine of the rotational
angle. Though vector analysis became the preferred
notation in many areas (Altmann 1989; Gibbs 1884),
quaternions have seen renewed use in recent years as
a practical representation for rotation, interpolation,
and estimation (Grassia 1998; LaViola 2003; Markley
and Mortari 2000; Shoemake 1985). The computational
advantages of quaternions in such applications suggest
that a quaternion-based approach merits investigation
in other areas typically addressed using vector or matrix
representations.

Quaternions over dual numbers—the dual quater-

nion—can represent both rotation and transla-
tion (Study 1903, 1913). Selig (2004) presents a
modern context for dual quaternions and more broadly
Clifford algebras in relation to Lie algebras. Yang and
Freudenstein (1964) applied dual quaternions to the
analysis of spatial mechanisms (closed chains). Several
recent authors have applied dual quaternions to robot
kinematics (Chevallier 1991; Dantam et al. 2014a,b; Han
et al. 2008; Kenwright 2012; Özgür and Mezouar 2016;
Srivatsan et al. 2016; Valverde and Tsiotras 2018; Wang
et al. 2012). Funda and Paul (1990) compare several
representations for screw displacements, concluding
that dual quaternions are the most efficient. Wang and
Zhu (2014) compare dual quaternion and homogeneous
matrix approaches, showing that dual quaternions are
often more efficient. We continue this application of
dual quaternions to robot kinematics by addressing
issues of singularities and numerical robustness in the
dual quaternion exponential and logarithm.

Though the form of the dual quaternion exponential
is well established (Funda and Paul 1990; Selig 2010),
there is, to our knowledge, no prior work that addresses
the zero-angle singularity in the dual quaternion
exponential and logarithm, which is necessary to
practically use dual quaternions in the product of
exponentials formulation. Han et al. (2008) observe,
though do not address, the zero-angle discontinuity.
Wang et al. (2012) provide an approximation of
the logarithm. In this work, we present new, exact
derivations of the dual quaternion exponential and
logarithm that remove the zero-angle singularity,
enabling the practical use of dual quaternions as
exponential coordinates. Furthermore, we show that
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implicitly representing a dual quaternion as an
ordinary quaternion and a translation vector is both
more compact and more computationally efficient for
common kinematics operations than either explicit dual
quaternions or homogeneous transformation matrices.

Kinematic singularities are a related issue where a
manipulator loses the ability to instantaneously move
in one or more dimensions due to the manipulator
Jacobian at such configurations lacking linearly
independent columns (Lynch and Park 2017; Murray
1994). Approaches to robustly compute manipulator
velocities at kinematic singularities typically include
damping terms in the pseudoinverse or apply the
singular value decomposition (SVD) (Nakamura and
Hanafusa 1986; Wampler 1986; Buss and Kim 2005). In
this work we address a different type of singularity.
Specifically, the exponential and logarithm of a
dual quaternion become undefined at the zero angle.
We remove these singularities by using quaternion
trigonometry to identify factors with well-defined Taylor
series. Additionally, the quaternion-based differential
kinematics we present in Sec. 5.2 is complementary
to approaches for kinematic singularities; robust
pseudoinverses directly apply to quaternion forms of
the manipulator Jacobian (63).

Many rececent works have applied constrained
optimization to inverse kinematics (Beeson and Ames
2015; Fallon et al. 2015; Feng et al. 2015; Kingston
et al. 2015; Rakita et al. 2018). Our dual quaternion
analysis supports such optimization approaches by
enabling the derivation of efficient, analytic gradients
for optimization problems. In particular, we derive
analytic gradients for SQP formulations of inverse
position kinematics presented in TRAC-IK (Beeson
and Ames 2015), resulting in a 300-500% speedup of
the optimization.

3 Matrix Exponential and Logarithm

We briefly restate the rotation and transformation
matrix exponential and logarithm to compare against
the quaternion forms and demonstrate the Taylor series
construction.

3.1 Rotation Matrix

We define the rotation matrix exponential and
logarithm using the rotation vector, i.e., the rotation
axis scaled by the rotation angle, because separating
the axis and angle results in an undefined axis
when the angle is zero and poor numerical stability
when attempting to construct the unit axis for small
angles (Grassia 1998).

The rotation matrix exponential (Lynch and Park
2017) is:

e[ω] = I+
sin |ω|
|ω| [ω] +

1− cos |ω|
|ω|2

[ω]2,

where [ω] =





0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0



 . (2)

We remove the singularity at |ω| = 0 via the Taylor

series in Table 1 for sin|ω|
|ω| and 1−cos|ω|

|ω|2 .

The rotation matrix logarithm (Lynch and Park 2017)
is:

~ω =
θ

2 sin θ





r32 − r23
r13 − r31
r21 − r12



 ,

where θ = cos−1

(
r11 + r22 + r33 − 1

2

)

. (3)

We remove the singularity at θ = 0 via the Taylor series
in Table 1 for θ

sin θ .
Numerical stability is another distinguishing feature

between matrices and quaternions. Repeated floating
point operations result in an accumulation of floating
point errors in the rotation matrix. General matrices
may be ortho-normalized using the Gram-Schmidt
procedure. For rotation matrices, a more efficient
approximation is the sequence of cross products:

orthonormalize
([
rx ry rz

])
=
[
r′x r′y r′z)

]
,

where

r′z =
rx × ry
|rx × ry|

,

r′y =
r′z × rx
|r′z × rx|

,

r′x =
r′y × r′z
∣
∣r′y × r′z

∣
∣
. (4)

3.2 Transformation Matrix:

The transformation matrix exponential (Lynch and
Park 2017) is:

e





~ω
~ν





=




e[ω]

(

I+ 1−cos|ω|
|ω| [ω] +

1− sin|ω|
|ω|

|ω|2 [ω]
2

)

~ν

0 1



 .

(5)
We remove the singularity at |ω| = 0 via the Taylor

series in Table 1 for 1−cos|ω|
|ω|2 and the following:

1− sin|ω|
|ω|

|ω|2
=

1

6
− |ω|2

120
+

|ω|4
5040

+ . . . (6)
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The transformation matrix logarithm (Lynch and
Park 2017) is:

ln

[
R v
0 1

]

=

(
lnR

(

I− [ω]
2 + 2s−|ω|(1+c)

2s|ω|2 [ω]
2
)

v

)

. (7)

We remove the singularity at |ω| = 0 via the following
Taylor series:

2 sin |ω| − |ω| (1 + cos |ω|)
2 (sin |ω|) |ω|2

=
1

12
+

|ω|2
720

+
|ω|4
30240

+ . . .

(8)

4 Quaternion Exponential and Logarithm

Now, we present the key contribution of this work: new,
singularity free forms of the dual quaternion exponential
and logarithm and their corresponding forms for
the implicit, quaternion-translation representation.
Our derivation starts with the established ordinary
quaterion exponential and logarithm (see Sec. 4.1).
Then, we derive the dual quaternion forms (see Sec. 4.2)
using quaternion trigonometry (see Fig. 1) to construct
Taylor series that remove the singularities. Finally, we
derive the equivalent exponential and logarithm for
the more compact and efficient quaternion-translation
representation (see Sec. 4.3).

4.1 Ordinary Quaternions

Ordinary quaternions extend complex numbers (ı̂2 =
−1) to three units:

ı̂2 = ̂2 = k̂
2
= ı̂̂k̂ = −1 . (9)

A quaternion, therefore, has four elements: the real
term (scalar) and the coefficients of each quaternion
unit ı̂, ̂, and k̂ (vector). We use the following notation
for the quaternion elements:

h = xı̂+ ŷ+ zk̂
︸ ︷︷ ︸

vector ~v

+ w
︸︷︷︸

scalar

= ~v + w . (10)

Quaternion Operations Multiplication of quaternions
derives from (9). The dot (·) and cross (×)
products, though actually introduced as an alternative
to quaternions (Gibbs 1884), allow a compact
representation of quaternion multiplication (⊗):

q ⊗ p = ~qv × ~pv + qw~pv + pw~qv
︸ ︷︷ ︸

vector ~v

+ qwpw − ~qv · ~pv
︸ ︷︷ ︸

scalar

.

(11)
Quaternion multiplication is associative and distribu-

tative, but not commutative. Table 3 summarizes some

Associative p ⊗ (q ⊗ r) = (p ⊗ q)⊗ r

Distributive p ⊗ (q + r ) = p ⊗ q + p ⊗ r

NOT Commutative p ⊗ q 6= q ⊗ p

Conjugate Mul. (p ⊗ q)∗ = q∗ ⊗ p∗

Conjugate Add. (p + q)∗ = q∗ + p∗

Table 3. Algebraic Properties of Quaternions

algebraic properties of quaternions. We may also restate
quaternion multiplication as a matrix-vector product,
which we use for differential and inverse kinematics
(see Sec. 5.2 and Sec. 5.3). In the matrix form of
quaternion multiplication, the vector is constructed
from one quaternion and the matrix is constructed
from the other:

q ⊗ p =

[q]L
︷ ︸︸ ︷






qw −qz qy qx
qz qw −qx qy
−qy qx qw qz
−qx −qy −qz qw













px
py
pz
pw







=







pw pz −py px
−pz pw px py
py −px pw pz
−px −py −pz pw







︸ ︷︷ ︸

[p]R







qx
qy
qz
qw







. (12)

The quaternion conjugate negates the vector part;
the product of a quaternion and its conjugate is a scalar.

h∗ = −~hv + hw and h ⊗ h∗ = x2 + y2 + z2 + w2 .
(13)

The norm of a quaternion is the square root of the
quaternion and its conjugate:

|h | =
√

(h ⊗ h∗) =
√

x2 + y2 + z2 + w2 . (14)

Unit quaternions, |h | = 1, define three-dimensional
rotations. Rotating a point by a unit quaternion is
defined by:

ap = ahb ⊗ bp⊗ ah∗
b

= 2 (ahb)v × ((ahb)v × bp+ (ahb)w
bp) + bp . (15)

The conjugate of a unit quaternion is the inverse. For
unit quaternions representing rotation, the conjugate
is the inverse rotation.

h ⊗ h∗ = 1, when |h | = 1 . (16)

Normalizing a quaternion is more efficient than the
corresponding matrix operation in (4). To normalize a
quaternion, we divide by its norm:

normalize (h) =
h

|h | =
x

|h | ı̂+
y

|h | ̂+
z

|h | k̂ +
w

|h | . (17)
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Quaternion Exponential and Logarithm The quaternion
exponential (Grassia 1998) is:

e~v+w = ew
((

sin |v|
|v|

)

~v + cos |v|
)

. (18)

When |v| approaches zero, we use the Taylor series for
sin |v|
|v| in Table 1.

For unit quaternions representing rotation θ about
unit axis û, the exponential simplifies to,

exp(θ, û) =

(

sin
θ

2

)

û+ cos
θ

2
. (19)

To compute the logarithm, we first find the angle
between the vector ~v and scalar w parts of the
quaternion. Then the logarithm is as follows:

φ = atan2 (|v| , w) and ln h =
φ

|v|~v + ln |h | . (20)

When |v| approaches zero, we handle the singularity
in φ

|v| by rewriting as follows:

φ

|v| =
φ

sinφ

|h | =
1 + φ2

6 + 7φ4

360 + . . .

|h | . (21)

4.2 Dual Quaternions

Dual quaternions are a compact representation that
offers useful analytic properties. A dual quaternion
combines ordinary quaternions and dual numbers. We
briefly review dual numbers and the use of dual
quaternions for kinematics before introducing our
new derivations of the exponential and logarithm to
handle the small-angle singularity. For a more thorough
overview of dual quaternions for kinematics, please see
Selig (2004).

Dual Numbers A dual number ñ contains the dual
element ε:

ñ = nr + ndε , where ε2 = 0 and ε 6= 0 . (22)

Multiplication of two dual numbers cancels the term
containing ε2 = 0:

ñm̃ = (nr + ndε) (mr +mdε)

= nrmr + nrmdε+ ndmrε+ ndmd��✒
0

ε2

= nrmr + (nrmd + ndmr) ε . (23)

The Taylor series for functions of dual numbers yields
a useful property: all higher-order terms containing ε2

f(r + dε) = f(r) + εd(f ′(r))
cos (r + dε) = cos r − εd sin r
sin (r + dε) = sin r + εd cos r

tan−1 (r + dε) = tan−1 r + εd
r2+1

exp (r + dε) = er + εerd
ln (r + dε) = ln r + d

rε√
r + dε =

√
r + ε d

2
√
r

Table 4. Dual numbers functions

cancel to zero.

f(r + dε) = f(r) +
f ′(r)

1!
(dε) +

f ′′(r)

2! ✟✟✟✯0
(dε)2 +✟✟✯0

. . .

= f(r) + εdf ′(r) . (24)

The dual number Taylor series (24) enables
evaluation of dual number functions using only the
value and derivative of the real function. We summarize
several relevant dual functions in Table 4.

Dual Quaternion Operations A dual quaternion contains
eight coefficients covering all combinations of the
quaternion elements, dual element, and scalars. We
write a dual quaternion as:

S = h + d ε =

real part h
︷ ︸︸ ︷
(

hxı̂+ hy ̂+ hzk̂ + hw

)

+
(

dxı̂+ dy ̂+ dzk̂ + dw

)

︸ ︷︷ ︸

dual part d

ε . (25)

The Euclidean transformation consisting of unit
quaternion rotation h and translation vector ~v
corresponds to the following dual quaternion.

S = h + d ε = h +
1

2
~v ⊗ hε and ~v = 2d ⊗ h∗ . (26)

Multiplication of dual quaternions chains successive
transforms.

aSc =
aSb ⊗ bSc = (ahb +

adbε)⊗
(
bhc +

bdcε
)

= ahb ⊗ bhc +
(
ahb ⊗ bdc +

adb ⊗ bhc
)
ε . (27)

Dual quaternion multiplication also has a correspond-
ing matrix-vector product form:

h + d ε
as vector

❀

[
hx hy hz hw dx dy dz dw

]T

C ⊗ S =

[
Cr ⊗ Sr

Cd ⊗ Sr + Cr ⊗ Sd

]

=

[C ]L
︷ ︸︸ ︷
[
([Cr]L) 04×4

([Cd]L) ([Cr]L)

]

S

=

[
([Sr]R) 04×4

([Sd]R) ([Sr]R)

]

︸ ︷︷ ︸

[S ]R

C ,

(28)
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where blocks of the form [Sr ]R are the ordinary
quaternion multiply matrices from (12) constructed
for the real (r) or dual (d) parts of S and C .
Rewriting (27) in terms of a transformation and a

point yields the dual quaternion form to transform a
point. An equivalent derivation extends (15) to the dual
numbers.

aSc =
aSb ⊗

(

1 +
1

2
bpε

)

❀
ap =

(
2d + h ⊗ bp

)
⊗ h∗ . (29)

The quaternion-conjugate of a dual quaternion† is
the conjugate of both real and dual parts.

(h + d ε)
∗
= h∗ + d ∗ε = −~hv + hw +

(

−~dv + dw

)

ε .

(30)
The conjugate of a unit dual quaternion produces

the inverse transformation.

(h + d ε)⊗ (h + d ε)
∗
= 1, when |h | = 1 . (31)

Singularity-Free Dual Quaternion Exponential To derive
a suitable form of the dual quaternion exponential, we
begin by rewriting the ordinary quaternion exponential
(18) over dual numbers.

φ̃ =
√

x̃2 + ỹ2 + z̃2

eS = ew̃

(

sin φ̃

φ̃

(

x̃ı̂+ ỹ̂+ z̃k̂
)

+ cos φ̃

)

(32)

Direct evaluation of (32) must contend with the

singularity (zero denominator) in the factor sin φ̃

φ̃
. To

handle the singularity, we algebraically expand the dual
arithmetic and rewrite factors based on quaternion
trigonometry into forms where we find suitable Taylor
series.
First, we expand the dual quaternion angle φ̃.

φ̃ =
√

(hx + dxε)2 + (hy + dyε)2 + (hz + dzε)2

=
√

h2
x + h2

y + h2
z +

hxdx + hydy + hzdz
√

h2
x + h2

y + h2
z

ε

= φ+
γ

φ
ε , (33)

where φ is the same as the ordinary quaternion angle
and γ = ~hv · ~dv.
The dual sin and cos are then

cos φ̃ = c − γ

φ
sε and sin φ̃ = s +

γ

φ
cε . (34)

where s = sinφ and c = cosφ.

Next, we expand the dual sinc function sin φ̃

φ̃
and

rearrange terms to find a suitable Taylor series to handle
the singularity at φ = 0:

sin φ̃

φ̃
=

sin(φ) + γ
φ cos(φ)ε

φ+ γ
φε

=
sin(φ)

φ
+ γ

(

cos(φ)− sin(φ)
φ

φ2

)

ε

=

(

1− φ2

6
+ . . .

)

︸ ︷︷ ︸

(sinφ)/φ

+ γ

(

−1

3
+

φ2

30
+ . . .

)

︸ ︷︷ ︸

(cosφ−(sinφ)/φ)/φ2

ε .

(35)

Finally, we expand the original form of the
exponential in (32):

eS = ew̃ (ar + adε)

where

ar = κr
~hv + c

ad = κr
~dv + κd

~hv − κrγ

φ = |hv| , s = sinφ , c = cosφ

γ = ~hv · ~dv

ew̃ = ehw + dwe
hwε

κr =
s

φ
= 1− φ2

6
+

φ4

120
+ . . .

κd = γ
c − κr

φ2
=

= γ

(

−1

3
+

φ2

30
− φ4

840
+ . . .

)

. (36)

By applying the Taylor series in (35), we stably
evaluate (36) in the neighborhood of φ = 0.

Singularity-Free Dual Quaternion Logarithm We derive
the dual quaternion logarithm by expanding the
ordinary form (20) with dual arithmetic.

ln S =
φ̃

ñ

(
~hv + ~dvε

)

+ ln m̃ , (37)

where φ̃, ñ, and m̃ are the dual number forms of φ, |hv|,
and |h |, (respectively) from (20). The dual arithmetic

†Dual quaternions also have a dual-conjugate (r + dε)• = r − dε

and a joint-conjugate (S∗)•
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expands as follows:

ñ =
√

(hx + dxε)2 + (hy + dyε)2 + (hz + dzε)2

= |hv|+
~hv · ~dv
|hv|

ε = |hv|+ ndε,

m̃ = |h |+ h · d

|h | ε = |h |+mdε,

φ̃ = tan−1 |hv|+ ndε

hw + dwε
. (38)

Further expanding φ̃ via the dual Taylor series for
tan−1 (see Table 4):

φ̃ = atan2 (|hv| , hw) +

(

hwnd − |hv| dw

|h |2

)

ε

= φ+

(

hwnd − |hv| dw

|h |2

)

ε . (39)

Next, we consider the dual φ̃
ñ using quaternion

trigonometry (see Fig. 1) to rewrite factors as
trigonometric functions for which we find well-defined
Taylor series. We expand the dual arithmetic and

reorder φ̃
ñ :

φ̃

ñ
=

φ+
(

hwnd−|hv|dw
|h|2

)

ε

|hv|+ ndε

=
φ

|hv|
+

(

hwnd

|hv| |h |2
− φnd

|hv|2
− dw

|h |2

)

ε . (40)

Equation (40) contains a singularity where |h | = 0.
We evaluate the term φ

|hv| as in (21). We rewrite the

larger term in the dual coefficient as follows:

hwnd

|hv| |h |2
− φnd

|hv|2
= ~hv · ~dv

(

hw

|hv|2 |h |2
− φ

|hv|3

)

. (41)

Next, we substitute the trigonometric functions (see
Fig. 1) for |hv| and hw and produce the corresponding
Taylor series:

hw

|hv|2 |h |2
− φ

|hv|3
=

1

|h |3

(

hw

|h |
|h |2

|hv|2
− φ |h |3

|hv|3

)

=
1

|h |3
(

cosφ

sin2 φ
− φ

sin3 φ

)

=
1

|h |3
(

−2

3
− 1

5
φ2 + . . .

)

. (42)

Now that we have identified Taylor series to handle
the singularities, we have the full dual quaternion

logarithm:

ln S = ln h +

(

κd
~hv + κr

~dv +
h · d

|h |2

)

ε

where φ = atan2 (hw, |hv|)
ln h = κr

~hv + ln |h |

κr =
φ

|hv|
=

1 + φ2

6 + 7φ4

360 + . . .

|h |

κd =
(
~hv · ~dv

)

ζ − dw

|h |2

ζ =

hw
|h|2 − κr

|hv|2
=

c
s2

− φ
s3

|h |3

=
− 2

3 − φ2

5 − 17φ4

420 + . . .

|h |3
(43)

4.3 Implicit Dual Quaternions

Just as we may represent transformations with a
rotation matrix and translation vector—i.e., the
homogeneous transformation matrix—we can also
represent transformations with a rotation quaternion
and translation vector. The quaternion-translation form
offers computational advantages: it consists of only
seven elements and chaining requires fewer operations
than both the dual quaternion and matrix forms.
However, because chaining is no longer a multiplication,
as with dual quaternions or matrices, analysis of
quaternion-translation kinematics is more complicated,
particularly for differential cases involving finding
derivatives or integrating transforms. We address the
analytic challenge of the quaternion-translation form
by reinterpreting quaternion-translations as implicit

dual quaternions, or alternately stated, by adopting
an in-memory representation of dual quaternions as a
quaternion-translation. The implicit dual quaternion
combines the analytic convenience of dual quaternions
and the computational efficiency the quaternion-
translation representation.
The quaternion-translation form stores separately

the rotation quaterion h and translation vector ~v,
eliminating the coupling of rotation and translation
in the dual part of the dual quaternion:

h +
1

2
~v ⊗ hε

︸ ︷︷ ︸

explicit dual quaternion

rewrite
❀




h

~v





︸ ︷︷ ︸

implicit dual quaternion

. (44)

To transform a point, we first apply the rotation, then
add the translation—the same operations performed by
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the homogenous transformation matrix and which we
may derive from (26) and (29):

ap = ahb ⊗ bp⊗ (ahb)
∗
+ a~vb . (45)

Chaining of transforms consists of the following
operations, again analogous to the transformation
matrix and derivable from (26) and (27):





ahc
a~vc



 =





ahb ⊗ bhc
ahb ⊗ bvc ⊗ (ahb)

∗
+ avb



 . (46)

Implicit Exponential We derive the exponential for the
implicit dual quaternion starting with (36), extracting
the translation, and finally identifying Taylor series.

First, we simplify (36) to the pure case, i.e., zero
scalar part:

e~ω+~νε =

(
s

φ
~ω + c

)

+

(
s

φ
~ν +

c − s
φ

φ2
γ~ω − s

φ
γ

)

ε

where γ = ~ω · ~ν and φ = |~ω| . (47)

Next, we extract the translation from the dual part.

˘exp (~ω + ~νε) =




h

~v





=





(
s
φ~ω + c

)

2
(

s
φ~ν +

c− s
φ

φ2 γ~ω − s
φγ
)

⊗
(

s
φ~ω + c

)∗




. (48)

In (48), we may evaluate the rotation part h as in
the ordinary quaternion case. For the translation part
~v, we first algebraically simplify:

~v = 2

(
s

φ
~ν +

c − s
φ

φ2
γ~ω − s

φ
γ

)

⊗
(

s

φ
~ω + c

)∗
(49)

= 2

(

− s2

φ2
~ν × ~ω +

cs

φ
~ν +

c(c− s
φ ) + s2

φ2
γ~ω

)

. (50)

Then, we simplify trigonometric factors and identify
the common subexpressions.

~v =
2s

φ

((
s

φ
~ω

)

× ~ν

)

+ c
2s

φ
~ν +

(

2− c 2sφ
φ2

)

γ~ω .

(51)

Using the Taylor series from Table 1 and for the new
factor, we obtain:

˘exp (~ω + ~νε) =




h

~v





where

h = µr~ω + c

~v = 2µr

(
~hv × ~ν

)

+ c (2µr)~ν + µdγ~ω

γ = ~ω · ~ν

φ = |~ω| , s = sinφ , c = cosφ

µr =
s

φ
= 1− φ2

6
+

φ4

120
+ . . .

µd =
2− c(2µr)

φ2
=

4

3
− 4φ2

15
+

8φ4

315
+ . . . (52)

Implicit Logarithm We derive the implicit logarithm
starting with (43), substituting the translation vector,
and finally identifying suitable Taylor series.

We begin with the dual quaternion logarithm (43):

l̆n




h

~v



 = ~ω + ~νε = ln

(

h +
1

2
~v ⊗ hε

)

. (53)

The real part ~ω of the implicit logarithm is identical
to the dual quaternion case (43). We assume a unit
quaternion |h | = 1, so the scalar part of the logarithm
is zero.

(

l̆n




h

~v





)

real

= ~ω =
φ

|hv|
~hv =

φ

sinφ
~hv . (54)

For the dual part ~ν, we expand (43), simplifying for
the unit case |h | = 1:
(

l̆n




h

~v





)

dual

= ~ν = κd
~hv + κr

~dv + ~hv · ~dv + hwdw

where ~dv =
1

2
~v × ~hv +

1

2
hw~v

dw = −1

2
~v · ~hv . (55)

Substituting for κr and κd from (43) and for dual
part d in terms of translation ~v, we simplify to:

~ν = −1

2
~v · ~hv

(
hwφ
s − 1

s2

)

~hv +
hwφ

2s
~v +

φ

2s

(

~v × ~hv

)

.

(56)

Noting that hw = cosφ and ~ω = φ
sinφ

~hv, we further
simplify to:

~ν =

(
~v

2

)

· ~ω

(

1− c φ
s

φ2

)

~ω + c
φ

s

(
~v

2

)

+

((
~v

2

)

× ω

)

(57)
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Finally, we identify the Taylor series to obtain the
implicit logarithm as follows:

l̆n




h

~v



 = ~ω + ~νε

where s = |hv| , c = hw , φ = atan2 (s , c)

~ω =
φ

s
~hv

~ν = µd

(
~v

2
· ~ω

)

~ω + µr
~v

2
+

~v

2
× ω

µr =
cφ

s
= 1− φ2

3
− φ4

45
− . . .

µd =
1− µr

φ2
=

1

3
+

φ2

45
+

2φ4

945
+ . . . (58)

5 Application to Kinematics

We present an application and performance analysis
of quaternion-based kinematics. First, we compare
quaternion forms with matrices for forward kinematics.
Then, we derive dual quaternion forms for differential
kinematics. Finally, we apply dual quaternion analysis
to inverse position kinematics formulated as sequential
quadratic programming (SQP). The results show
that quaternion forms and analysis offer improved
performance for robot kinematics.
The test platform for empirical performance

evaluations was an Intel® Xeon E3-1275 v6. We
used the kinematics implementations in Amino (http:
//amino.dyalab.org), and we solved the SQP using
NLopt (Johnson 2019; Kraft 1988, 1994).

5.1 Forward Kinematics

Both matrix and quaterion representations may
be used to compute the forward kinematics of
robot manipulators. We compare the different
representations and show that the quaternion-
translation offers the best forward kinematics
performance. Analytically, quaternion-translations
require the fewest arithmetic instructions, and in our
empirical evaluation, quaternion-translations require
the shortest execution time.
Table 5 and Table 6 compare operations for

quaternion and matrix forms.
Table 7 summarizes the construction of relative

transformations for single degree-of-freedom joints using
matrix and quaternion forms. We use the known axis
of joints to simplify construction over the general-
case exponential. The result shows that quaternion-
translations require the fewest arithmetic instructions.

We empirically compare the computation time for
the forward kinematics of several common manipulators
using matrices, dual quaternions, and quaternion-
translations. For each manipulator, we generated
random configurations using the rand() function (IEEE
and The Open Group 2018; Loosemore et al. 2020) to
sample each configuration variable θi as follows:

θi = θi,min + (θi,max − θi,min)
rand()

RAND MAX
, (59)

where θi,min and θi,max are the minimum and maximum
values of the configuration variable, respectively.
We tested 10,000 random configurations and then
evaluated the forward kinematics 10,000 times for each
configuration. Fig. 2 presents the results in terms
of speedup over the baseline matrix representation.
The timing variation between configurations was
minor (standard deviation less than 10% of the
mean) since computing the forward kinematics requires
the same sequence of floating point operations
for any configuration; the observed variation may
arise due CPU or operating system issues such as
caching or context switching, which are effectively
nondeterministic. The quaternion-translation shows
the best empirical performance, consistent with the
instruction counts in Table 5, Table 6, and Table 7.
Additionally, the explicit dual quaternion also offers
slightly better performance than matrices in our
tests. Even though matrices require fewer arithmetic
instructions to construct and chain, several other
advantages of the dual quaternions lead to the improved
performance. Dual quaternions are more compact than
matrices, which reduces necessary data shuffling, and
quaternions require fewer operations for the exponential
and rotation chaining, which are heavily used in robots
with many revolute frames.

5.2 Differential Kinematics

Next, we derive dual quaternion forms for differential
kinematics. We first introduce the dual quaternion
derivative. Then, we restate the conventional con-
struction of the geometric manipulator Jacobian and
compare construction using matrices, explicit, and
implicit dual quaternions. Finally, we derive the dual
quaternion form of the manipulator Jacobian. For
a more thorough overview of Jacobian kinematics
methods, please see Buss (2004).

Quaternion Derivatives First, we relate velocities and
the quaternion derivatives. The ordinary quaternion
derivative ḣ relates to angular velocity ω as
follows (Grassia 1998):

ḣ =
1

2
ω ⊗ h . (60)
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Chain Rot./Tf. Normalize
Representation Storage Mul. Add Mul. Add Mul. Add Other

R
o
t. Rotation Matrix 9 27 18 9 6 27 15 sqrt(3)

Quaternion 4 16 12 15 15 8 3 sqrt

T
f.

Transformation Matrix 12 36 27 9 9 27 15 sqrt(3)
Dual Quaternion 8 48 40 28 28 12 3 sqrt

Quaternion-Translation 7 31 30 15 18 8 3 sqrt

Table 5. Requirements for storage, chaining, and point transformation. Quaternion-based representations are more compact
than matrices. Ordinary quaternions and quaternion-translations are most efficient for chaining rotations and transformations,
respectively. Matrices are most efficient for rotating and transforming points.

Exponential Logarithm
Representation Mul. Add Other Mul. Add Other

R
o
t.

Rot. Matrix 17 15 sqrt, sincos 5 7 sqrt, atan2
Quaternion 9 2 sqrt, sincos, exp 8 3 sqrt(2), atan2, ln

Unit Q. 7 2 sqrt, sincos 7 2 sqrt, atan2

T
f.

Tf. Matrix 39 34 sqrt, sincos 31 32 sqrt, atan2
Dual Quat. 31 12 sqrt, sincos, exp 22 11 sqrt(2), atan2, ln

Unit Dual Q. 19 8 sqrt, sincos 18 9 sqrt, atan2
Quat.-Trans. 28 15 sqrt, sincos 28 16 sqrt, atan2

Table 6. Exponential and Logarithm Operation Counts. Ordinary and dual quaternions are more efficient than their matrix
equivalents. The quaternion-translation costs are between the matrix and dual-quaternion.

Form Mul. Add Other

R
e
v
o
lu
te

Tf. Matrix

[
e[θû] v
0 1

]

12 13 sincos

Dual Quat. e
θ
2
û + ~v

2 ⊗ e
θ
2
ûε 19 12 sincos

Quat.-Trans.




e

θ
2
û

~v



 3 0 sincos

P
ri
sm

a
ti
c Tf. Matrix

[
R ℓû
0 1

]

3 0 -

Dual Quat. h + ℓ
(
û
2 ⊗ h

)
ε 4 0 -

Quat.-Trans.




h

ℓû



 3 0 -

H
e
li
c
a
l Tf. Matrix

[
e[θû] (kû) θ
0 1

]

15 13 sincos

Dual Quat. e
θ
2
û + θ kû

2 ⊗ e
θ
2
ûε 23 14 sincos

Quat.-Trans.




e

θ
2
û

(kû)θ



 6 0 sincos

θ

c

p

û

~v

c

ℓ

û
p

c

θ

kθ

û
p

Table 7. Single degree-of-freedom joint transforms and operation counts. The quaternion-translation representation is most
efficient to construct.

We relate the dual quaternion derivative to rotational
and translational velocities by differentiating (26) and

substituting for ḣ using (60):

Ṡ =
d

dt

(

h +
1

2
~v ⊗ hε

)

= ḣ +
1

2

(

v̇ ⊗ h + ~v ⊗ ḣ
)

ε

=
1

2

(

ω ⊗ h +
1

2

(

v̇ ⊗ h +
1

2
~v ⊗ ω ⊗ h

)

ε

)

. (61)
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1.4

1.33

1.38

1.4

1.12

1.1

1.15

1.16

1

1

1

1

Tf. Matrix
Dual Quat.
Quat.-Trans.

Baxter

UR10

Jaco

LWA4D

Frame Counts

Robot Fixed Revolute

Baxter 73 15

UR10 7 6

Jaco 7 12

LWA4D 3 7

Figure 2. Forward kinematics speedup (higher is better), demonstrating a 30%-40% performance improvement using
quaternion forms. We compare the execution time to compute the forward kinematics for the Rethink Baxter, Universal Robots
UR10, Kinova Jaco, and Schunk LWA4D manipulators using transformation matrices, dual quaternions, and
quaternion-translations. The results are shown as speedup ( tbaseline

tnew
) over the transformation matrix case.

Then, we factor (61) to separate the spatial twist Ω
as a dual quaternion,

Ṡ =
1

2
Ω⊗ S , where Ω = ω + (v̇ + ~v × ω) ε .

(62)

Note that twist Ω in (62) is a pure dual quaternion,
i.e., zero scalar in the real and dual parts.

Geometric Manipulator Jacobian The manipulator
Jacobian relates changes in workspace and configuration
space. There are multiple ways we might parameterize
workspace change, e.g., rotational (ω) and translational
(v̇) velocities, twist (Ω), or the dual quaternion
derivative (Ṡ):
[
ω
v̇

]

= Jxθ̇ , Ω = JΩθ̇ , and Ṡ =
∂S

∂θ
θ̇ . (63)

We compare the construction of velocity (Jx) and
twist (JΩ) Jacobians across different representations.
Then, we derive the dual quaternion Jacobian ∂S

∂θ .
Each column i of the Jacobian J corresponds to the

ith configuration variable and contains a rotational part
(jr) and a translational part (jv or jp):

Jx =

[(
jr
jv

)

1

. . .

(
jr
jv

)

n

]

JΩ =

[(
jr
jp

)

1

. . .

(
jr
jp

)

n

]

. (64)

For the common cases of revolute and prismatic joints,
we may construct the corresponding Jacobian column
based on the joint axis and origin. We construct the
velocity Jacobian Jx as follows (Buss 2004):

(
jr
jv

)

i

∣
∣
∣
∣
revolute

=

(
Gûi

Gûi ×
(
G~ve − G~vi

)

)

(
jr
jv

)

i

∣
∣
∣
∣
prismatic

=

(
0

Gûi

)

, (65)

where Gûi is the joint axis, G~ve is the end-effector
translation, and G~vi is the origin of joint i, all in global
(fixed) frame G. We construct twist Jacobian JΩ as
follows (Lynch and Park 2017):

(
jr
jp

)

i

∣
∣
∣
∣
revolute

=

(
Gûi

G~vi × Gûi

)

(
jr
jp

)

i

∣
∣
∣
∣
prismatic

=

(
0

Gûi

)

. (66)

Thus, the main operation to construct each column
of Jx or JΩ is to rotate the joint’s axis into the global
frame. Table 8 compares the construction of twist
Jacobian JΩ for matrices, explicit, and implicit dual
quaternions; construction of Jx is similar, requiring only
an additional vector subtraction for each revolute joint.
To directly construct the Jacobian column, matrices
require the fewest operations due to their efficiency at
applying a rotation. However, when we also consider
the cost to construct and chain the transformation,
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implicit dual quaternions require fewer operations in
the revolute case, which typically make up the majority
of robot joints.

Quaternion Manipulator Jacobian We now combine the
geometric Jacobian and quaternion derivatives to
construct the quaternion manipulator Jacobian, i.e.,
the relationship between configuration velocity θ̇ and
dual quaternion derivative Ṡ . First, we rearrange (62)
in matrix form (see (28)) to separate twist Ω to one
side,

Ṡ =
1

2
Ω⊗ S =

1

2
[S ]R Ω . (67)

Then, we substitute for twist Ω in (67) using the
twist Jacobian JΩ from (63),

Ṡ =
1

2
[S ]R Ω ❀ Ṡ =

(
1

2
[S ]R JΩ

)

︸ ︷︷ ︸

∂S/∂θ

θ̇ . (68)

We now have a form for the dual quaternion Jacobian
in terms of the twist Jacobian JΩ obtained from
Table 8:

∂S

∂θ
=

1

2
[S ]R JΩ . (69)

If we need the Jacobian only for the rotation
quaterion, we take the upper-half (rotation part) of
(69) and simplify to,

∂h

∂θ
=

1

2
[h ]R

[
Jr

01×n

]

, (70)

where Jr is the upper-half (rotation part) of JΩ or
equivalently Jx.

We may solve inverse velocity kinematics—finding a
suitable joint velocity to achieve a desired workspace
change—by solving the system of linear equations in any
of the forms of (63). To address kinematic singularities,
robust methods to compute the pseudoinverse may be
applied to any of these Jacobian forms (Nakamura and
Hanafusa 1986; Wampler 1986; Buss 2004; Buss and
Kim 2005). The velocity Jacobian Jx is a 6× n matrix.
The twist Jacobian JΩ contains all zeroes in its real and
dual scalar rows and thus simplifies to a 6× n matrix.
In contrast, the dual quaternion Jacobian ∂S

∂θ is an 8× n
matrix. Thus Jx and JΩ, being smaller matrices, are
more efficient for inverse velocity kinematics. However,
we use ∂S

∂θ to achieve an efficiency advantage for inverse
position kinematics.

5.3 Inverse Position Kinematics

We extend our dual quaternion analysis to improve the
efficiency and robustness of inverse position kinematics.

Inverse position kinematics has a direct interpretation
as constrained optimization to minimize error f between
actual (Sact) and reference (Sref) poses, subject to joint
constraints:

minimize
θ

f (Sact(θ), Sref)

subject to θmin ≤ θ ≤ θmax . (71)

Beeson and Ames (2015) formulate inverse position
kinematics as sequential quadratic programming (SQP)
in “TRAC-IK” and present several objective functions
for pose error. The SQP offers improved robustness
over a benchmark Newton-Raphson solver. However,
the TRAC-IK implementation computes gradients via
finite difference, requiring repeated evaluation of the
robot’s forward kinematics. Consequently, the SQP
is often slower than the Newton-Raphson benchmark,
leading to an overall approach that runs multiple solvers
across different threads.

We derive the analytic gradients for objective
functions in Beeson and Ames (2015). As with the
TRAK-IK implementation, we use a quasi-Newton
SQP solver—specifically NLopt (Johnson 2019; Kraft
1988, 1994)—which approximates the Hessian, so
only the gradient is necessary. Avoiding the repeated
forward kinematics computations required by the finite
difference gradient results in a 300-500% speedup of
inverse kinematics (see Table 9).

Logarithm Objective First, we derive the analytic
gradient for the objective function in equation (3)
of Beeson and Ames (2015). This objective function
computes error as the sum of squares of the logarithm
of the error dual quaternion:

f(θ) = |Ωrel|2 = |ln (S∗
act(θ)⊗ Sref)|2 . (72)

To find the gradient of (72), we first modify our
notation by rewriting operations as functions,

f(θ) = ssq (ln (conj (Sact(θ))⊗ Sref)) , (73)

where ssq (x) = xTx and conj (S) = S∗.
Then, we differentiate by repeatedly applying the

chain rule:

1. ∇f(θ) = ∇ssq (ln (S∗
act(θ)⊗ Sref)) ∗

∂
∂θ ln (S∗

act(θ)⊗ Sref)

2. ∂
∂θ ln (S∗

act(θ)⊗ Sref) =
∂ln
∂S

(S∗
act(θ)⊗ Sref) ∗

∂
∂θ conj (Sact(θ))⊗ Sref

3. ∂
∂θ conj (Sact(θ))⊗ Sref =

∂conj
∂θ (Sact(θ))⊗ Sref +

conj (Sact(θ))⊗✚
✚✚❃

0
∂Sref
∂θ

4. ∂conj
∂θ (Sact(θ)) =

∂conj
∂S

(Sact(θ))
∂Sact
∂θ
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Direct Total
Representation Jacobian Column Mul. Add Mul. Add Other

R
e
v
o
lu
te

Tf. Matrix

(
GRi

îu
G~vi × jr

)

15 9 63 49 sincos

Dual Quat.

(
Ghi ⊗iû⊗ Gh∗

i(
2Gdi ⊗ Gh∗

i

)
× jr

)

37 34 104 86 sincos

Quat.-Trans.

(
Ghi ⊗iû⊗ Gh∗

i
G~vi × jr

)

21 18 55 48 sincos

P
ri
sm

a
ti
c Tf. Matrix

(
0

GRi
îu

)

9 6 48 33 -

Dual Quat.

(
0

Ghi ⊗iû⊗ Gh∗
i

)

15 15 67 55 -

Quat.-Trans.

(
0

Ghi ⊗iû⊗ Gh∗
i

)

15 15 49 45 -

Table 8. Manipulator Twist Jacobian (JΩ) construction and operation counts. Transformation matrices require the least
operations to directly construct the corresponding Jacobian column. However, if we include constructing and chaining the
transform, Quaternion-translations require the least operations for the common-case of revolute joints.

The resulting gradient is as follows. We omit
arguments for each partial derivative to simplify
notation and convert the quaternion multiplication to
matrix multiplication via (28).

∇f = (∇ssq)

(
∂ln

∂S

)((
∂conj

∂S

)(
∂Sact

∂θ

))

⊗ Sref

= (∇ssq)

(
∂ln

∂S

)

[Sref ]R

(
∂conj

∂S

)(
∂Sact

∂θ

)

.

(74)

Next, we find each partial derivative in (74). We have
∂Sact
∂θ from (69), and we derive ∇ ssq and ∂conj

∂S
directly

as follows:

∇ssq(x) =
[
2x1 2x2 . . . 2xn

]

∂conj

∂S
=







−I3×3 0 03×3 0
01×3 1 01×3 0
03×3 0 −I3×3 0
01×3 0 01×3 1







. (75)

Deriving the Jacobian of the quaternion logarithms
is more involved. Direct symbolic partial differentiation
of (20) and (43) yields large expressions that contain
singularities. However, by carefully inspecting the
elements, we again apply the quaternion trigonometry of
Fig. 1 and identify well-defined Taylor series to remove
the singularities. We summarize the resulting Jacobians
for the ordinary and dual quaternion logarithms.

The Jacobian of the ordinary quaternion logarithm
is,

∂ln

∂h
=








ζx2 + η ζxy ζxz − x
|h|2

ζxy ζy2 + η ζyz − y
|h|2

ζxz ζyz ζz2 + η − z
|h|2

x
|h|2

y
|h|2

z
|h|2

w
|h|2








where

η =
φ

|hv|
=

1

|h |

(
φ

sinφ

)

=
1

|h |

(

1 +
φ2

6
+ 7

φ4

360
+ . . .

)

ζ =

hw
|h|2 − η

|hv|2
=

cosφ
sin2 φ

− φ
sin3 φ

|h |3

=
− 2

3 − φ2

5 − 17φ4

420 + . . .

|h |3
. (76)

We note that factor ζ also appears in the dual
quaternion logarithm (43). Derivatives and dual number
functions are related through the dual number Taylor
series (24).

The Jacobian of the dual quaternion logarithm is,

∂ln

∂S
=





(
∂ln
∂S

∣
∣
real

)

04×4
(

∂ln
∂S

∣
∣
dual

) (
∂ln
∂S

∣
∣
real

)



 (77)
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where the real block ∂ln
∂S

∣
∣
real

is the is the ordinary

Jacobian from (76) and the dual block ∂ln
∂S

∣
∣
dual

is as
follows:

∂ln

∂S

∣
∣
∣
∣
dual

=







fx,x + τ fx,y fx,z −gx
fy,x fy,y + τ fy,z −gy
fz,x fz,y fz,z + τ −gz
gx gy gz gw







where

fa,b = (hadb + hbda) ζ

+ hahb

(

γµ+
2dw

|h |4

)

ga =
da

|h |2
− ha

2 (γ + hwdw)

|h |4

γ = ~hv · ~dv

τ = γζ − dw

|h |2

µ =

−2hw
|h|4 − 3ζ

|hv|2
=

−2cs3 − 3cs + 3φ

s5 |h |5

=
8
5 + 4φ2

7 + φ4

7 + . . .

|h |5
. (78)

We note that the direct symbolic partial differentia-
tion of (43) yields elements in the w column of ∂ln

∂S

∣
∣
dual

of the form,

ℓa = − da

|h |2
ξ1 + ha

2γ

|h |4
ξ2 + ha

2hwdw

|h |4
= −ga (79)

where

ξ1 =
|h |2 − h2

w

|hv|2
=

1− c2

s2
= 1

ξ2 = − h2
w

|hv|2
− |h |2 h2

w

2 |hv|4
+

|h |2

2 |hv|2
+

|h |4

2 |hv|4

= −2c2s2 − s2 + c2 − 1

2s4
= 1 (80)

Since the factors ξ1 and ξ2 thus simplify to 1, the
entries in this column are equal to −ga.

Now that we have found all the partial derivatives in
(74), we simplify to evaluate more efficiently. First, we
substitute for ∇ ssq and ∂S/∂θ. Then, we reorder the
multiplication to a sequence of matrix-vector products
from right-to-left, and finally simplify the multiplication

by ∂conj
∂S

to a conjugation:

∇f = 2ΩT
rel

(
∂ln

∂S

)

[Sref ]R

(
∂conj

∂S

)(
1

2
[Sact]R JΩ

)

=

(

JT
Ω [Sact]

T
R

(
∂conj

∂S

)T

[Sref ]
T
R

(
∂ln

∂S

)T

Ωrel

)T

=

(

JT
Ω [Sact]

T
R

(

[Sref ]
T
R

(
∂ln

∂S

)T

Ωrel

)∗)T

. (81)

where Ωrel = ln (S∗
act ⊗ Sref).

Rotation Logarithm and Translation Objective Next, we
derive the analytic gradient for an objective function
that separates the rotational and translational parts.
We restate (4) from Beeson and Ames (2015) in terms
of rotation quaternions and translation vectors:

f(θ) = fr(θ) + fv(θ) = |ωrel|2 + |~vrel|2

= |ln (h∗
act(θ)⊗ href)|2 + |~vact(θ)− ~vref |2 . (82)

The gradient of (82) is the sum of gradients of the
rotational part fr and translational part fv:

∇f(θ) = ∇fr(θ) +∇fv(θ) . (83)

The derivation of rotational gradient ∇fr is
equivalent to our gradient derivation for the previous
logarithmic objective function (81), but now we need
only ordinary quaternions for rotation instead of dual
quaternions. The result is equivalent in structure to
(81):

∇fr(θ) =

(

JT
r [hact]

T
R

(

[href ]
T
R

(
∂ln

∂h

)T

ωrel

)∗)T

,

(84)

where Jr is the rotational block of the manipulator
Jacobian and ωrel = ln (h∗

act ⊗ href).
To find the translational gradient∇fv, we first modify

our notation and then differentiate:

fv(θ) = ssd (~vact(θ)) (85)

∇fv(θ) = (∇ ssd)

(
∂~vact
∂θ

)

. (86)

The partial derivatives in (86) are then,

∇ ssd = 2 (~vact − ~vref)
T

∂~vact
∂θ

= Jv , (87)

where Jv is the translational part of the velocity
Jacobian Jx in (63), which may be computed from (65).
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We again reorder the gradient to a the matrix-vector
product,

∇fv(θ) = 2 (~vact − ~vref)
T
Jv

= 2
(
JT
v (~vact − ~vref)

)T
. (88)

We now have the full gradient of the objective
function (82),

∇f(θ) =

Rotational: ∇fr
︷ ︸︸ ︷
(

JT
r [hact]

T
R

(

[href ]
T
R

(
∂ln

∂h

)T

ωrel

)∗)T

+ 2
(
JT
v (~vact − ~vref)

)T

︸ ︷︷ ︸

Translational: ∇fv

. (89)

Inverse Kinematics Results We evaluate the analytic
gradients (81) and (89) within an SQP and compare
against our implementation of the benchmark finite
difference gradient. For this evaluation, we produced a
set of feasible inverse kinematics problems by sampling
random configurations using (59) and then computing
the forward kinematics for each configuration to
give the reference pose for the inverse kinematics
problem. Table 9 shows the results for 20,000 such
inverse kinematics problems. Avoiding the repeated
computation of forward kinematics required by the
finite difference gradient improves the efficiency of the
SQP for inverse position kinematics and yields both an
empirical 300-500% speedup and improved robustness
under fixed time budgets. The separated rotation and
translation objective (82) performs better, which is
consistent with results in Beeson and Ames (2015). The
performance difference is most pronounced for time-
limited random restarts using the analytic gradient
(89). The analytic logarithm gradient (81) requires 8× 8
matrix-vector products while the analytic rotation and
translation gradient (89) requires only 4× 4 matrix-
vector products.

The variation in time to solve inverse kinematics for
difference reference poses is significant as shown by
the standard deviations in Table 9. Different reference
poses or initial seeds may change the number of required
iterations to solve the SQP. Moreover, the optimization
may reach a local minima that is not at the reference
pose, thus requiring additional random restarts to solve.
The presented analytic gradients partially mitigate this
issue by solving more instances within a given time limit,
but optimization-based approaches in general vary in
required iterations and need restarts and timeouts to
address local minima (Goldenberg et al. 1985; Kumar
et al. 2010; Beeson and Ames 2015).

6 Discussion

We often have the choice of a matrix or quaternion
form for any particular application; both produce a
mathematically-equivalent result, but the computa-
tional efficiency differs. For example, interpolation
is commonly regarded as a key application area for
quaternions; however, we can achieve the same result—
at greater computational cost—using rotation matrices.
Spherical linear interpolation (SLERP) (Shoemake
1985) interpolates from an initial to final orientation
with constant rotational axis and linearly-varying angle.
The algebraic form of SLERP (Dam et al. 1998) has a
direct matrix equivalent:

h(τ) = h(0)⊗ exp
(
τ ln

(
(h(0))

∗ ⊗ h(1)
))

(90)

R(τ) = R(0) exp
(

τ ln
(

(R(0))
−1

R(1)
))

, (91)

where h(0),R(0) is the initial orientation and h(1),R(1)
is the final orientation. Both (90) and (91) equivalently
interpolate orientation. However, the quaternion form
(90) is more efficient to compute than the matrix form,
and the more commonly used geometric simplification
of (90) is even more efficient (Shoemake 1985).
Similarly, the logarithm objective function (72) for

inverse position kinematics has a corresponding matrix
form:

fquat(θ) = (ln (S∗
act(θ)⊗ Sref))

T
(ln (S∗

act(θ)⊗ Sref))

fmat(θ) =
(
ln
(
T−1

act(θ)Tref

))T (
ln
(
T−1

act(θ)Tref

))
.

(92)

We define the separated rotation and translation
objective function (82) in terms of quaternions whereas
the implementation in TRAK-IK uses matrices.
Ordinary and dual quaternions also provide

computational advantages for the blending or averaging
of rotations and transformations (Kavan et al. 2008;
Markley and Mortari 2000), which was described by
Wahba (1965) as optimal rotation based on a set of
weighted observations.

Floating point operations for both matrices and
quaternions may benefit from parallelism though Single

Instruction, Multiple Data (SIMD) operations such as
Intel AVX (Firasta et al. 2008) or Arm Neon. SIMD uses
multiple processing elements in parallel—for example,
to simultaneously add the elements of two vectors.
Matrix-matrix and matrix-vector products both contain
parallelizable multiplications and additions. Quaternion
products are similarly paralelizable, as shown in the
matrix form of the quaternion multiplication (12).

The efficiency gains from quaternion-based kinemat-
ics may generally support real-time computation in
robot systems to the extent of reducing the required
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Finite Difference Analytic Gradient

Robot mean(ms) std(ms) solved(%) mean(ms) std(ms) solved(%) speedup
|l
n
(S

∗ a
c
t
⊗

S r
e
f
)|

2 S
in
g
le

baxter 0.686 0.350 82.75 0.153 0.072 82.77 4.472
ur10 0.490 0.238 86.92 0.115 0.045 86.92 4.269
jaco 0.411 0.204 74.05 0.125 0.060 74.05 3.294
lwa4d 0.433 0.200 96.91 0.133 0.051 96.91 3.249

5
m
s

baxter 0.974 0.957 98.72 0.236 0.318 99.93 4.133
ur10 0.658 0.664 99.58 0.160 0.184 100.00 4.127
jaco 0.754 0.931 98.38 0.259 0.480 99.69 2.912
lwa4d 0.457 0.265 100.00 0.141 0.075 100.00 3.235

5
0
m
s

baxter 1.040 1.506 99.98 0.236 0.343 100.00 4.401
ur10 0.678 0.868 100.00 0.159 0.179 100.00 4.266
jaco 0.871 1.732 100.00 0.271 0.614 100.00 3.208
lwa4d 0.457 0.264 100.00 0.142 0.076 100.00 3.226

|l
n
(h

∗ a
c
t
⊗

h r
e
f
)|

2
+

|~v
a
c
t
−
~v
r
e
f
|2

S
in
g
le

baxter 0.622 0.338 84.58 0.115 0.058 84.58 5.389
ur10 0.478 0.215 88.10 0.090 0.035 88.09 5.336
jaco 0.397 0.158 79.19 0.091 0.038 79.19 4.376
lwa4d 0.422 0.176 98.07 0.097 0.036 98.07 4.362

5
m
s

baxter 0.868 0.870 99.08 0.172 0.225 99.98 5.063
ur10 0.626 0.616 99.59 0.120 0.135 100.00 5.192
jaco 0.652 0.767 99.11 0.163 0.281 99.94 4.013
lwa4d 0.434 0.233 100.00 0.100 0.050 100.00 4.314

5
0
m
s

baxter 0.901 1.158 100.00 0.173 0.256 100.00 5.223
ur10 0.636 0.707 100.00 0.122 0.135 100.00 5.229
jaco 0.698 1.308 100.00 0.164 0.317 100.00 4.263
lwa4d 0.433 0.233 100.00 0.101 0.050 100.00 4.310

Table 9. Inverse kinematics results demonstrating a 300-500% speedup and improved robustness for a fixed time budget using
the analytic gradients. The upper rows use objective function (72), and the lower rows use objective function (82). We test for
20,000 random, valid poses obtained by sampling configurations and computing the forward kinematics. The “Single” entries
attempt each inverse position kinematics problem once from a seed at the joint center configuration; the “5ms” and “50ms”
entries restart each inverse position kinematics problem from a random seed for up to the listed timeout.

amount of computation. However, the key issue in real-
time computing is not overall throughput but latency
and predictability (Lee 2009; Dantam et al. 2015, 2016).
Thus, it is important to observe that optimization-
based inverse position kinematics, both as presented
in this work and as developed by others (Smits et al.
2011; Beeson and Ames 2015), is not complete in that
it does not indicate when a desired pose is infeasible.
Instead, such solvers run until reaching a local minima
or with random restarts until a timeout. To bound
computation for real-time motion, one may precompute
a path outside the real-time loop—such as by using
optimization-based inverse kinematics to sample goal
configurations for a motion planner (Kuffner and
LaValle 2000; Şucan et al. 2012)—and then track
that path in real-time. The quaternion-based SQP
formulation would improve the efficiency of such goal
sampling; however, the overall requirement remains to
bound computation in real-time systems.

Generally, the matrix and quaternion representations
of rotation and Euclidean transformation share group
structure. Just as the rotation and transformation
matrices form Lie groups with associated Lie algebras

based on the exponential, so too do the ordinary
and dual quaternions form Lie groups and associated
algebras. We can map every quaternion representation
to matrix equivalent. Specifically, there is a surjective
homomorphism (double-cover) from the ordinary unit
quaternions to the special orthogonal group SO(3)
of rotation matrices. Similarly, we have a surjective
homomorphism from the dual unit quaternions to
the special Euclidean group SE(3) of homogeneous
transformation matrices.
The results we have presented continue the broader

developments of methods based on ordinary and dual
quaternions which offer computational advantages over
their matrix counterparts. The quaternion methods
we have presented achieve mathematically-equivalent
results, but are more compact and efficient, than the
matrices.

7 Conclusion

We have presented new derivations of the dual
quaternion exponential, logarithm, and derivatives
which handle the small-angle singularity and enable
robust use of dual quaternions for robot kinematics.
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By extending our singularity-robust exponential
and logarithm to the implicit representation of
dual quaternions as an ordinary quaternion and
translation vector, we demonstrate a 30%-40%
performance improvement in forward kinematics
over the conventional homogeneous transformation
matrices. Applying our quaternion analysis to
inverse position kinematics formulated as sequential
quadratic programming yields a 300-500% performance
improvement. Our implementation is available as open
source code‡. These results show that dual quaternions—
though equivalent in representational capability to
transformation matrices—offer distinct computational
advantages.

While matrices are a widely-used representation
for Euclidean transformations, the quaternion forms
are both more compact and—for most cases—require
fewer arithmetic instructions. In the one case where
matrices have an efficiency advantage—transforming
large numbers of points—it may still be more efficient
to chain transformations via quaternions and then
convert the final transform to a matrix to apply to the
point set. We hope these derivations of singularity-free
exponentials and logarithms for the quaternion forms
of transformations, along with our demonstrations of
forward and inverse kinematics, will enable widespread
use of these more efficient representations.
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A Construction from Denavit-Hartenberg

Parameters

Though recent works have favored the product of
exponentials formulation (Lynch and Park 2017),
Denavit-Hartenberg (DH) parameters (Hartenberg and
Denavit 1964) continue as a potential approach to
specify robot kinematics. Radavelli, et al. present a
construction of dual quaternions from DH parameters in
the distal convention (Radavelli et al. 2014). We relate
DH parameters in both distal and proximal conventions
to implicit dual quaternions, using the double angle
identities to remove extra computations of sin and cos.

The proximal DH convention (Lynch and Park 2017)
defines a rotation and translation about ı̂ followed by

a rotation and translation about k̂,

{α, a, φ, d}prox
❀ Rot(ı̂, α) ∗ Trans(̂ı, a) ∗ Rot(k̂, φ) ∗ Trans(k̂, d) .

The distal DH convention (Murray 1994) defines a
rotation and translation about k̂ followed by a rotation
and translation about ı̂,

{φ, d, α, a}dist
❀ Rot(k̂, φ) ∗ Trans(k̂, d) ∗ Rot(ı̂, α) ∗ Trans(̂ı, a) .

Table 10 compares the construction from DH
parameters for matrices, explicit, and implicit dual
quaternions.
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Errata

• Equation 3: Corrected second element from r13 −
r30 to r13 − r31.

• Equation 27: corrected real part from ahb ⊗ ahb to
ahb ⊗ bhc.
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