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Communication Jamming-Aware

Robot Path Adaptation

Jonathan Diller1 Neil Dantam1 John Rogers2 Qi Han1

Abstract—Robot networks are necessary for a variety of
monitoring and surveillance applications where robots must
communicate observations. This work considers robot networks
that must operate in an area affected by potential communication
jamming and excessive radio frequency noise. Specifically, we
look at deploying a reinforcement robot to strengthen an existing
network of robots that are already performing a monitoring task.
The robot’s objective is to find a location that maximizes the
network’s signal-to-noise ratio. We present a Gaussian process
approach to predict areas of excessive radio frequency noise,
enabling the robot to avoid these areas and relay more data.
We evaluate our algorithm’s performance in physical robot
experiments using a Clearpath Jackal robot and a USRP software-
defined radio to broadcast a jamming signal. Our results show
major improvements in networking metrics over a baseline and
demonstrate the need for jamming-aware robot planning.

Index Terms—robotics, robot networks, self-adaptive behavior

I. INTRODUCTION

Robots offer the potential to collect remote sensor data for

monitoring, surveillance, and detection in hazardous situa-

tions [1], [2]. Robots may be arranged into robot networks,

where the robots (which may be stationary for periods of time)

collect data from the environment and relay that data to a central

location through other robots. However, wireless interference—

whether inadvertent or due to malicious jamming—may prevent

the robots from communicating. Unlike stationary sensors,

robots offer a key ability to overcome jamming: they can move

outside of the jammed area if they know where that area is.

A major challenge in mapping jamming areas and regions

with excessive noise is the high variance in radio frequency

signals. A Gaussian process as a regression model is a

probabilistic way to map out natural phenomena, such as radio

frequencies, with a confidence metric for a prediction. In this

work, we use a Gaussian process approach for mobile robots

to predict areas with communication jamming and excessive

radio frequency noise and then incorporate this prediction into

a robot path-planning algorithm for network reinforcement.

Figure 1 illustrates our problem setup. Robot C must move

to a position where it can relay data between robots A and B

with minimal packet loss in the presence of wireless jamming.

We assume that the robot has no prior knowledge of the jammer

and must determine in real-time the best location to relay data

through exploration. To the best of our knowledge, we are

the first to propose a practical method for avoiding jamming
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Fig. 1: General problem setup. The region inside the red dashed

lines is affected by signal jamming. Robot C must position

itself to reinforce the connection between robots A and B.

Robot C initially picks the red marker as its position. Once

there, robot C detects the jammer and determines that the best

deployment location is the blue X.

in robot networks and implement it on a physical testbed to

evaluate our solution’s feasibility.

In this work we make the following contributions:

1) we use a Gaussian Process to infer regions affected by

a jammer without the need to fully map the region;

2) we present a jamming-aware online algorithm to deploy

mobile robots; and

3) we validate our approach through physical robot experi-

ments using Universal Software Radio Peripheral (USRP)

software-defined radio platforms and a Clearpath Jackal

robot.

The following section provides a review of related works.

Section III formally defines our problem and the models

and assumptions we use. Section IV presents our proposed

methods for solving this problem and Section V describes our

experimental setup and results.

II. RELATED WORK

In this section we summarize different types of wireless

jamming, how to detect and locate jammers, and methods for

countering and avoiding jamming with robots.
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A. Types of Communication Jamming

In general, there are four main categories of communication

jamming techniques: (1) proactive; (2) reactive; (3) function-

specific; and (4) smart and hybrid techniques [3]. Examples

of proactive jamming include broadcasting constant noise over

a wireless channel or sending out a constant stream of small,

empty data packets [4]. Reactive jammers wait for other devices

to attempt to communicate over a wireless channel then employ

one of the proactive techniques. Function-specific jammers

are designed for a specific function such as interfering with

frequency hopping techniques and often affect multiple wireless

channels. Smart and hybrid jammers take advantage of known

wireless network architectures to disrupt larger networks.

B. Detecting & Locating Jamming

How to detect and counter a jamming device depends on

the jamming technique being used. Proactive, reactive, and

some function-specific jamming attacks can usually be detected

using various wireless network quality metrics such as the

received signal strength indicator, the signal-to-noise ratio, or

packet loss rate. The more advanced jamming approaches may

require technique-specific detection strategies depending on

the approach used. We assume that the robot is capable of

detecting and measuring jamming at a given position using

well-studied techniques [3], [4], [5], [6].

If the wireless signal of a jammer is detected, then locating

the jamming device using a mobile agent could be formulated

as a signal mapping problem. An example of general signal

mapping with a robot is seen in [7], where the authors use a

Gaussian Process to locate a wireless access point. The signal

mapping problem requires the robot to explore large areas of

the environment which can be time-consuming. In our work,

we consider how a robot can determine where to position itself

by only mapping out relevant areas.

C. Countering & Avoiding Jamming with Robots

Typical jamming countermeasures include changing the

transmission channel or rerouting network traffic. In this work,

we assume that these methods are not sufficient and the robot

must relocate itself (often referred to as “spatial retreat” [5]).

A lot of related work in spatial retreat assumes that the

location of the jammer is known. For non-mobile jammers

with known positions, the regions affected by jamming can

be considered stationary obstacles. Mobile jammer scenarios

with known or partially known positions are often solved using

game theory approaches [8], [9]. In our work, the robot has no

prior knowledge of jammed regions and must detect a jammer

in real-time.

Spatial retreat methods for unmapped jammers often require

the robot to drive away from the jammer. In [5], [10] the authors

propose moving networked devices in a random direction

until the device is no longer affected by jamming and then

following the perimeter of the jammed area to attempt to

reestablish network topology. The authors in [11] propose

following a signal-to-noise ratio gradient to reposition robots

away from noise sources. Our work builds on these prior

solutions by adding a method for predicting noise and jamming.

Additionally, these previous solutions were never evaluated on

physical robot systems. In this work, we evaluate our solution

on a physical robot testbed and discuss how to implement our

solution on modern-day robots.

III. PROBLEM FORMULATION & MODELING

In this section we introduce the scenario considered, dis-

cuss the models used, formally define the Robot-Network-

Deployment Problem, and state the major assumptions made

in this work.

A. Scenario Formulation

We address the robot network scenario illustrated in Figure 1.

Let X be a two-dimensional continuous space consisting of

disjoint obstacle region Xobs and free space Xfree. We assume

that any point in Xfreeis reachable by a robot, which can be

determined using motion planning infeasibility proofs [12].

Let Xns be a map of the radio frequency (RF) noise in X .

We assume that Xobs and Xfree are known a priori but Xns is

unknown and may contain sub-regions with excessively high

RF noise from other networked devices or communications

jammers.

Let A and B be two robots already deployed in X at points

xa and xb, respectively. A third robot C starts from point p and

must position itself in Xfree to reinforce a wireless connection

between A and B.

B. Networking Models

For a relay robot to make communication-aware control

decisions, we need a mathematical model for how well two

robots can transmit data between each other. For this, we

propose using a signal-to-noise ratio (SNR).

The signal strength received at a network node is inversely

proportional to the distance between the sending node and

the receiving node. As presented in [13], the power of a radio

frequency signal measured at the receiver in a multi-propagation

environment can be modeled as:

P (r) = P (r0)(
r0

r
)n (1)

where r is the distance between the two network nodes and

P (r0) is a reference power measurement at reference distance

r0. For small-scale communication systems, such as IEEE

802.11 (WiFi), r0 is normally 1 m - 100 m. Variable n is the

path-loss exponent which describes how the signal dampens

with respect to distance and is environment dependent. In

free space, we expect n ≈ 2 while in an obstructed indoor

environment we should expect n ∈ [4, 6]. In decibels, P (r)
can be represented as:

P (r)dB = P (r0)dB + 10nlog(
r0

r
) (2)

Reference signal P (r0)dB can be determined experimentally

by measuring signal strength at distance r0. However, a poorly

measured P (r0)dB could anchor a predicted distance to signal

power relationship to a point that fails to properly represent the

mapping from distance to signal power. Due to the stochastic
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nature of wireless communication, we instead incorporate

P (r0)dB and r0 into an optimization problem to find n. If

given a set of measurements I , where I consists of matching

pairs of received signal strength measurement pi and distance

ri between transmitter and receiver, then we can determine n

as:

min
n,c

∑

i∈I

(
(−10nlog(ri) + c)− pi

)2
(3)

where c = P (r0)dB + 10nlog(r0). Solving (3) only requires

obtaining I and does not require us to select an r0 or measure

P (r0)dB as determining both become part of the optimization

problem.

Suppose that robot A at position xa is sending data to robot

B at position xb. After solving for n and c for A and B in the

deployment environment, we can predict the received signal

strength of A sending data to B as:

PAB(dab)dB = −10nlog(dab) + c (4)

where dab is the straight line distance from xa to xb. If the RF

noise at xb is Pn(xb)dB , then the SNR of a data transmission

from A to B will be:

SNRAB(xa, xb) =

signal strength at B
︷ ︸︸ ︷

PAB(dab)dB −

RF noise B
︷ ︸︸ ︷

Pn(xb)dB (5)

Note that Equation 4 should consider if the two robots have

line-of-sight (LoS) (i.e. there are no obstacles between the two

robots). In practice, we recommend determining two versions

of Equation 4: one for when the robots have line-of-sight (LoS)

with each other and another for when the robots do not (nLoS).

C. Problem Definition

Reinforcement robot C’s goal is to explore X and position

itself in a location that maximizes SNR for relaying data

from source robot A to sink robot B while avoiding malicious

communication jamming. The utility of deploying C at some

point xc to act as a wireless relay between A and B depends

on how well it can receive data from A and relay it back to B.

Let the utility of placing C at point xc be

U(C) = min
(

SNR: A to C
︷ ︸︸ ︷

SNRAC(xa, xc),

SNR: C to B
︷ ︸︸ ︷

SNRCB(xc, xb)
)
, (6)

which returns the smaller expected SNR between the wireless

connections from A to C and from C to B.

We formally define the Robot-Network-Deployment Problem

as follows:

Definition 1 (Robot-Network-Deployment Problem). Given

space X consisting of disjoint obstacle region Xobs and free

space Xfree, locations of robots A and B, and starting position

p of robot C, find location xc that maximizes U(C), such that

xc ∈ Xfree and the robot does not traverse Xobs.

After experimentally determining SNRAC() and

SNRCB(), we could solve the Robot-Network-Deployment

Problem offline if we knew Pn(x)dB for any x ∈ X . However,

because we assume no prior knowledge of Xns, the RF noise

in X , we do not know Pn(x)dB for all x ∈ X and the robot

must explore X to determine an optimal xc.

IV. PROPOSED ALGORITHMS

To solve the Robot-Network-Deployment Problem, we pro-

pose an online approach that measures and responds to

jamming. The key novelty in our approach is representing RF

noise and jammed areas using Gaussian processes, measuring

noise online, and updating the representation of jammed areas.

A. Gaussian Processes to Represent Jamming

In general, a GP is a collection of random variables where

any subset of two or more of these random variables has

a multivariate Gaussian distribution [14]. In GP regression,

we assume that the regression function f∗ that maps inputs to

outputs is distributed as a Gaussian process. This is represented

mathematically as a normal distribution:

f∗ ∼ N
(
mean
︷︸︸︷

0 ,

covariance
︷ ︸︸ ︷

K(X∗,X∗)
)

(7)

where the distribution has a mean of 0 and K(X∗,X∗) is the

covariance matrix of prior input knowledge. If we have t prior

samples, we can use the set of prior input knowledge Xt and

prior outputs yt to find a vector of weight w = [K(Xt,Xt) +
σ2
ϵ I]−1yt where σ2

ϵ is the covariance of the input noise. To

make a prediction of a new input x, we then compute:

t∑

i=0

wik(xi, x) (8)

where wi is the ith entry in w and k(xi, x) is the covariance

between prior sample xi and x.

To represent RF noise as a GP we use the location in X
as the input to the GP and noise strength at that location as

the output. By fitting a GP to location and noise strength

measurements, we can predict regions of high RF noise and

jamming even for areas we have not directly measured. The

robot uses a GP to predict jamming and RF noise, i.e. Pn(x)dB ,

for points in X that have not been explored.

We address areas with high uncertainty by only accepting

predictions that have low variance in the GP model at that

location. Specifically, if the variance of a prediction exceeds

a maximum allowable threshold ρ, we discard that prediction

and assume that the RF noise strength for that cell is equal to

the noise floor of the wireless spectrum. The noise floor will

vary depending on the environment and equipment used, but is

generally around -100 dB. Ignoring weak predictions prevents

the robot from making decisions with low-confidence data.

B. Updating the Jamming Gaussian Process

While the robot explores the environment, it measures the

current jamming signals. If jamming is detected, then the robot

records the strength of the signal in dB and the location where

the reading was taken. If there is no jamming signal present,

then the robot records the noise floor of the wireless channel

being used, which is also recorded in dB.
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Fig. 2: Flowchart of the proposed online algorithm to solve

the Robot-Network-Deployment Problem.

To update its knowledge of jammed areas, the robot uses the

signal recordings as prior knowledge for the GP. The location

where a signal was recorded is used as the prior input and

the recorded signal strength is used as the prior output. The

strength of a wireless signal at any given point tends to vary

greatly due to a multitude of factors, so we group reading

locations into discrete map coordinates and average the reading

values to prevent excessive variations in our prior knowledge.

C. Planning & Execution

Our online algorithm for solving the Robot-Network-

Deployment Problem and finding xc is illustrated in Figure 2.

The robot explores the environment until it finds an unjammed

location that maximizes signal strength between A to B. First,

the robot uses the GP to find an optimal goal location that it

expects will avoid jamming and maximize SNR. Second, the

robot plans and moves to that location, measuring jamming

along the way. Third, the robot updates the GP and runs the

algorithm again until the algorithm converges on a deployment

location.

To identify a goal location, the robot conducts a linear scan

through a discretized map of X . For each discrete location

x′ in X , the robot calculates the utility gained, U(C), from

positioning itself at x′. To compute U(C), the robot considers

whether or not it has line-of-sight (LoS) with both A and B,

using different versions of SNRAC() and SNRCB() based

on LoS. The robot determines LoS using Bresenham’s line

algorithm on a discretized version of Xfree

⋃
Xobs [15]. To

predict noise for each cell, the robot either queries prior

measurements for that cell or makes an RF noise prediction as

described in Section IV-A. The robot selects a goal location, x′

c,

as the x′ with the greatest value of U(C). Larger discretizations

of X will reduce the number of cells the planner must search

at the cost of position accuracy while smaller discretizations

of X will improve accuracy but increase search time.

Next, the robot plans a path to goal location x′

c and moves.

For 2D space X , we plan paths by running A∗ on a discretized

version of Xfree

⋃
Xobs. When the robot reaches x′

c, it repeats

the steps described above to find a new goal location x′′

c . If

x′

c = x′′

c , then the algorithm has converged on a final goal

location and the robot stops exploring the environment. If

x′

c ̸= x′′

c , then the robot continues to run the exploration

algorithm until the algorithm converges on a final location.

V. PERFORMANCE EVALUATION

We evaluated our algorithm in two different case studies

using physical robots and radios. The first was in a network

of hallways in a large city-block shape, and the second was

in a long, straight hallway with an intersecting passage in the

middle. We used a Clearpath Jackal robot as the robot to be

deployed, a Raspberry Pi 4 and laptop to model additional

robots already deployed, and the USRP B205mini-i software-

defined radio (SDR) platform from Ettus Research as a jammer.

We chose to use an SDR for the jamming device because they

are flexible and give us control over the jammer’s behavior.

We used the Better Approach to Mobile Ad-hoc Networking

(BATMAN) routing protocol to establish an ad-hoc network

between robots [16].

In the following subsections, we discuss further discuss our

experimental setup and discuss the results of our two case

studies. We used packet loss rate and Netflix’s VMAF scores

on video streams as our evaluation metrics [17]. Our results

show that communication jamming can impede robot networks

and that using a GP for noise prediction can improve networked

robot deployment.

A. Generation and Detection of Jamming Signals

We created a WiFi jammer by broadcasting a Gaussian

noise over a single channel at the 2.4 GHz band. The noise is

generated with a 22 MHz bandwidth, which covers the entirety

of a 2.4 GHz WiFi channel. This noise will disrupt other

wireless devices on the same frequency by corrupting other

wireless signals or by keeping the channel busy, preventing

well-behaved devices from transmitting.

To sense the presence of the jammer, we used a second

B205mini-i SDR that measures the noise floor of the 2.4 GHz

band. The noise detecting SDR takes rapid signal measurements

over the designated WiFi channel and averages them together

to determine the noise floor of the channel. If the average of

the readings is notably higher than the normal noise floor then

we can tell that constant noise is being used to disrupt the

wireless channel.

B. Determining n and c

As discussed in Section III-B, to use Equation 4 (our online

algorithm’s utility function) to predict signal strength for any

point in X we must solve Equation 3 (determine n and c) by

taking signal strength measurements at varying distances in

the deployment environment for each pair of robots.

We set up one Raspberry Pi (acting as robot A) and a second

Raspberry Pi (attached to robot C for data relay) at varying
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(a) ρ = 1.0 (b) ρ = 0.25 (c) ρ = 0.0625 (d) Fully mapped area

Fig. 3: Results of mapping a hallway with a GP while adjusting ρ. Figures 3a, 3b, 3c show the results of the robot making a

short move then mapping the noise floor with varying values of ρ. The black triangle is the location of the jammer. The black

line shows the path of the robot where the green square is the robot’s starting position and the green circle is where the robot

stopped.

distances apart and measured the received signal strength at C

both with and without LoS. We repeated these experiments for

the Raspberry Pi attached to C and a laptop used as a robot B.

We ran this experiment in both the block hallway and the long

hallway, taking a total of 3,500 measurements for each setup.

To determine values for n and c for each setup, we used

the SciPy implementation of the Broyden-Fletcher-Goldfarb-

Shanno (BFGS) algorithm on Eq. (3). The BFGS algorithm is

an iterative numerical optimization algorithm that determines

the gradient of an unconstrained non-linear function by

approximating the Hessian matrix of the function using the

secant method [18]. We chose the BFGS algorithm because

it is a Newton-like method that avoids the need to repeatedly

solve for the Hessian on large sets of input data.

Figure 4 shows the results of our experiments to determine

P ()dB between robots A and C in the block hallway. For

the LoS case, we found n = 0.630 and c = −60.86 and for
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Fig. 4: Experiments to determine P ()dB between robots A and

C in the block hallway.

NLoS we found n = 1.111 and c = −60.24. We note that these

values for n are much lower than estimated in subsection III-B.

We believe this is due to the low transmission gain setting on

the robots, which is needed to force multi-hop connections at

short ranges.

C. Impact of Variance Threshold (ρ) on GP Prediction Error

To evaluate the impact of the variance threshold (ρ) on

overall model error, we compared GP-based predictions for

varying values of ρ against a fully-explored map and found

the mean percentage error (MPE) in the prediction. The results

are shown in Table I. Figures 3a, 3b, and 3c show a heat

map of the GP predictions with ρ = 1, 0.25, and 0.0625,

respectively. Figure 3d shows the actual AoE of the jammer

after fully mapping out the entire space. Our results show that

MPE starts to exceed 5% when the variance exceeds 0.0625

and recommend a value of 0.05 for ρ.

D. Physical Robot Experiments

We evaluated our algorithm in two areas as shown in Figure 5

located in Brown Hall on the Colorado School of Mines

campus. The first is in a network of hallways in the shape of a

city block, and the area has partitioned walls with small offices

in the closed-off areas. The second is in a long hallway with

a large T-intersection in the middle, and the area has block

walls with laboratories in the closed-off areas.

We compared our algorithm (“GP”) against a jamming-

agnostic approach (“JA”). JA selects a position for C that

maximizes equation (6) and does not consider the jammer. We

ρ = 1 0.5 0.25 0.125 0.0625 0.0313

MPE 22.120 20.149 12.822 8.134 5.379 3.499

TABLE I: Mean percentage error (MPE) as the value of ρ

changes.
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-30
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60

(b)(a)

Fig. 5: Example results of our algorithm on the physical testbed

for the block hallway (a) and the long hallway (b). The black

triangles show the location of the jammer, the yellow squares

depict the deployed robots, and the green circles show the

starting point of the network reinforcement robot. The robot

icon shows the final deployment location and the SNR heat

map shows the robot’s final SNR prediction.

ran five trials in each testing area. We set ρ = 0.05 and exper-

imentally determine n and c as described in subsection V-B

for both areas. Figure 5 shows example runs of our algorithm.

Once the algorithm terminates and the robot reaches its

final goal, we attempted to ping node A from node B (via C)

200 times and recorded the packet-loss-ratio (PLR). We also

attempted to stream a one-minute video from A to B (via C)

and computed the VMAF score of the received video. For both

of these metrics, a larger number is better. Table II shows the

results of our trials in both areas. On average, our GP method

experienced a PLR of 0.865, an improvement of 251.6% over

the JA baseline. The average VMAF score for our GP method

was 9.19, a 173.1% improvement compared to the JA score of

3.365.

Block Hallway Long Hallway Total

JA GP JA GP JA GP

PLR 0.578 0.999 0.401 0.731 0.4895 0.865

Std. dev. 0.528 0.002 0.292 0.302 0.413 0.246

VMAF 8.014 8.660 0 9.720 4.007 9.190

Std. dev. 1.651 2.787 0 4.124 4.365 3.365

TABLE II: Average packet loss ratio (PLR) and VMAF scores

with standard deviation for each test case.

VI. CONCLUSIONS

In this study, we investigated a robotics application where a

ground robot positions itself in a robot network. We proposed

an online algorithm for the robot to explore the area and

determine a suitable location to relay data while monitoring for

malicious communications jamming. We proposed a method

using a Gaussian process to predict the Area of Effect of a

jammer that limits predictions based on the variance in the

model.

We evaluated our proposed algorithm in a series of physical

robot experiments in two indoor areas. Our GP-based approach

for predicting RF noise leads to a 252% improvement in

the packet-loss-ratio of a baseline and a 173% improvement

in video stream quality. These results highlighted the need

for jamming-aware robot planning algorithms and how noise

prediction can improve connectivity in networked robots.

Future work will focus on the multi-robot variation of this

problem. We also see future areas of work in heterogeneous

vehicle problems such as collaborative aerial and ground

vehicle teams that must accomplish a task while avoiding

communications jamming.
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