
IEEE Robotics and Automation Letters http://dx.doi.org/10.1109/LRA.2023.3327655

Scaling Infeasibility Proofs via Concurrent,

Codimension-one, Locally-updated Coxeter

Triangulation
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Abstract—Achieving a complete motion planner that guarantees
a plan or infeasibility proof in finite time is challenging, especially
in high-dimensional spaces. Previous efforts have introduced
asymptotically complete motion planners capable of providing
a plan or infeasibility proof given long enough time. The
algorithm trains a manifold using configuration space samples
as data and triangulates the manifold to ensure its existence in
the obstacle region of the configuration space. In this paper,
we extend the construction of infeasibility proofs to higher
dimensions by adapting Coxeter triangulation’s manifold tracing
and cell construction procedures to concurrently triangulate the
configuration space codimension-one manifold, and we apply a
local elastic update to fix the triangulation when part of it is in
the free space. We perform experiments on 4-DOF and 5-DOF
serial manipulators. Infeasibility proofs in 4D are two orders of
magnitude faster than previous results. Infeasibility proofs in 5D
complete within minutes.

Index Terms—Motion and Path Planning, Computational
Geometry

I. INTRODUCTION

A
Complete motion planner must either return a path from

the start to the goal or report path non-existence in finite

time. Complete motion planning would benefit many high-level

planning problems where motion planning is a sub-problem [1]–

[4]. However, achieving completeness is challenging when the

configuration spaces are continuous, high-dimensional, and

implicitly defined. Many sampling-based motion planners are

probabilistically complete [5]–[10], meaning that if a path exists

in the configuration space, the planner returns a plan given

long enough time. Recent work [11] defined the notion of

asymptotic completeness in which the planner returns a path or

reports path non-existence given long enough time. Compared

to probabilistic completeness, asymptotic completeness offers

the additional capability of producing path non-existence

or infeasibility proofs. In this paper, we address scalability

challenges of asymptotically complete motion planning.

Previous work [12], [13] proposed an asymptotically com-

plete sampling and learning based motion planning framework.

The constructed infeasibility proof is a closed manifold or

polytope that is fully in the obstacle region and separates the
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Fig. 1: Algorithm overview. Three threads run in parallel. The

algorithm terminates with a plan or an infeasibility proof.

start and goal. The algorithm runs in parallel with sampling-

based motion planners and uses the sampled configurations as

data to learn a manifold. A triangulation of this manifold then

provides the infeasibility proof. Each facet of the triangulation

is checked to ensure containment in the obstacle region

of the configuration space. This prior algorithm scaled to

4D configuration spaces. The major scalability limit is the

triangulation step, which takes the majority of the runtime.

This paper presents an approach to scale the triangulation step

by adapting and integrating a new computational geometry tool,

Coxeter triangulation [14].

The same training and sampling framework can also solve

narrow passage motion planning problems, which is called

sample-driven connectivity learning (SDCL) [15]. There is a

natural integration of SDCL and infeasibility proof construction

since both use the same manifold learned from configuration

samples. This paper employs a new algorithmic framework that

combines SDCL and infeasibility proof construction (Figure 1).

In this work, we present an asymptotically complete motion

planner that generates infeasibility proofs using an adaptation

of Coxeter triangulation and simultaneously improve narrow

passage motion planning. The infeasibility proof construction is

two orders of magnitude faster than previous work. The major

contributions are listed here. 1) We adapt Coxeter triangula-

tion [14] for codimention-one manifold with elastic updates to

locally fix the triangulation to resolve the scalability limit. 2)

We adapt the overall algorithm structure to facilitate narrow

passage motion planning. 3) We utilize parallel computing

techniques for triangulation, which is enabled by our adaptation

of Coxeter triangulation and overall framework. 4) We propose

a new bisection and checking step for facets in the triangulation
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when configuration space penetration depth cannot be robustly

calculated.

We evaluate this algorithm on 4-DOF and 5-DOF manip-

ulators. Constructing infeasibility proofs in 4D is two orders

of magnitude faster than [13], and in 5D, we can construct

infeasibility proofs within a few minutes, which was not

previously possible. We further discuss scalability issues in

Sec. VII. Finally, in evaluated scenes with feasible plans through

narrow passages, our framework found plans two orders of

magnitude faster than a baseline of RRT-Connect.

II. RELATED WORK

A. Completeness and Sampling-based motion planning

Achieving completeness in motion planning is desired but

difficult since we typically do not have an explicitly defined

configuration space, especially in high dimensions. Sampling-

based motion planning is an effective and widely applicable

strategy that incorporates typically random sampling to search

a metric configuration space [5]–[8], [10], [16]–[23], and

thus only requires a configuration validity checker. However,

sampling-based planners have traditionally only offered proba-

bilistic completeness. If the planner times out without returning

a plan, there is no guarantee of plan non-existence, since

the planner may just need more time to find the path. This

uncertainty about plan existence poses challenges when motion

planning is a sub-routine in a higher-level planning problem [1]–

[4]. Conversely, an asymptotically complete planner [11],

will eventually return a plan or an infeasibility proof. The

infeasibility proof provides an exact proof of plan non-existence,

which could help eliminate some of the search branches of a

higher-level planning problem. Asymptotic completeness brings

us one step closer to completeness but does not guarantee

termination in finite time.

B. Infeasibility Proofs

Some previous works construct exact path non-existence

guarantees. [24] proves path non-existence for single, rigid

objects in a 2D or 3D workspace to guarantee stable grasp. [25]

considers the specific problem of a rigid body passing through a

narrow gate. [26] constructs alpha-shapes in the obstacle region

to query the connectivity of two configurations, which works

for up to 3-dimensional configuration spaces. These methods

do not apply to general manipulators’ configuration spaces.

[27] proposed a method to construct infeasibility proofs by

growing facets in the obstacle region and then identifying closed

polytopes from the set of facets. This method is computationally

expensive due to the combinatorial identification step, scaling

only to 3-DOF manipulators within reasonable time limits.

There are also methods that provide approximate path non-

existence guarantees. Visibility [28] and sparsity [29] based

planners achieve high coverage of the free space, so if no

plan is found when the algorithm terminates, the problem may

be considered infeasible [30]. Deterministic sampling-based

motion planning also provides certain guarantees on plan non-

existence [31]–[34]. If no plan is found, then either no solution

exists or a solution exists only through some narrow passages.

Previous works have also applied learning-based methods to

predict infeasible plans [35]–[39]. However, these methods do

not provide definitive plan nonexistence guarantees.

This paper uses an overall structure similar to previous work

in [12], [13], in which we proposed a sampling and learning

based infeasibility proof construction algorithm. The algorithm

runs in parallel with a sampling-based motion planner. First, us-

ing the base planner’s search tree or graph, the algorithm learns

and samples a manifold. Then, the manifold is triangulated and

each facet of the resulting triangulation is checked to ensure

the triangulation is entirely in Cobs. This paper uses a similar

strategy and adapts new computational geometry tools [14]

in the triangulation step for faster computation to extend the

algorithm to higher dimensions.

C. Narrow Passage Motion Planning

Narrow passages pose challenges for sampling-based motion

planners due to low sampling probabilities. Various strategies

aim to address this issue [40]–[42]. The extreme case of

narrow passages is when obstacles in the workspace cause

the configuration space narrow passage to become occluded

(making the problem infeasible), which sampling-based motion

planning has traditionally not addressed. This work integrates

infeasibility proof construction with a narrow passage motion

planner SDCL [15] so that when plans exist in narrow passages,

they are quickly found, and when the plans become infeasible,

the algorithm switches to constructing the infeasibility proof.

III. PROBLEM DEFINITION

We focus on kinematic motion planning and aim to achieve

asymptotic completeness—that is, to return a plan when one

exists and to return an infeasibility proof when no plan exists.

A motion planning problem [43] consists of a configuration

space C of dimension n, a start configuration qstart, and a goal

configuration qgoal. The configuration space C is the union of

the disjoint obstacle region Cobs and free space Cfree. For high-

DOF manipulators, Cobs and Cfree are implicitly defined using

a validity checking function that takes a configuration as input,

returns false if the configuration collides with obstacles, and

returns true otherwise. Both qstart and qgoal are in Cfree. When

a plan exists, the output is a plan σ such that σ[0, 1] ∈ Cfree,
σ[0] = qstart, σ[1] = qgoal. When there is no feasible plan,

the output is an infeasibility proof M. An infeasibility proof

M is a closed manifold that lies entirely in the obstacle region

and separates qstart and qgoal [13].

A. Requirements and Assumptions

We have additional requirements on the configuration space.

First, the obstacle region of the configuration space must be

entirely ε-blocked, meaning the obstacle region cannot be

infinitesimal. Also, we require a Euclidean configuration space

instead of a metric space (e.g. SE(3)) since the triangulation

of the manifold requires Euclidean space. We further define

virtual obstacles at the configuration space boundaries so that

we can treat boundaries the same as obstacle regions. More

details on these requirements are in [11]. Finally, the current

algorithm applies to kinematic motion planning only.
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IV. BACKGROUND

We briefly summarize the key prior results in this section,

including SDCL [15], infeasibility proof construction [13], and

Coxeter triangulation [14], [44].

A. Sample-Driven Connectivity Learning from Roadmaps

SDCL integrates sampling-based planning and machine

learning to effectively solve difficult motion planning problems

with narrow passages [15]. There are two main steps in SDCL:

learning a manifold and sampling the manifold.

In the learning step, SDCL uses a partially-constructed

probabilistic roadmap G as training data for a binary classifier.

All samples in G that are connectable to qgoal are one class, and

all other samples are the other class. The result of learning is

a configuration space manifold F (q) (q ∈ C), i.e., the decision

boundary of the classifier, that separates the start and goal.

In the sampling step, SDCL finds points on the manifold

by solving a non-linear optimization problem to minimize the

manifold function’s absolute value, |F (q)|. Sampled manifold

points in Cfree offer potential connections between the start and

goal components, providing a strong heuristic when planning

in configuration spaces with narrow passages [15].

B. Infeasibility Proofs

The algorithm in [13] generates infeasibility proofs in

four main steps. The first two steps are similar to learning

and sampling a manifold in SDCL (see Sec. IV-A). After

training the manifold, the algorithm verifies that the manifold

is completely contained in Cobs to confirm it is an infeasibility

proof. Directly checking the manifold itself poses challenges

since Cobs is often implicitly defined. Instead, the algorithm

generates a triangulation of the manifold using tangential

Delaunay complexes [45], [46] and checks the facets of the

triangulation using configuration space penetration depth. When

all facets are in the obstacle region, the triangulation is an

infeasibility proof according to its definition.

C. Coxeter Triangulation

The authors in [14] introduce the manifold tracing algorithm

which uses R
n Coxeter triangulation (call it CTR in the

following) to triangulate a manifold. The inputs to manifold

tracing are an m-dimensional smooth manifold in R
n and seed

points on the manifold. The result is a set of k-dimensional

simplices that intersect the manifold (where k = n−m, known

as the codimension), forming a manifold triangulation later on.

To avoid explicit construction of every point of CTR (which

is infinite), the algorithm uses a permutahedral representa-

tion [14]. This permutahedral representation supports queries

for vertices, faces, and cofaces of a simplex, and locating

points on simplices (locate(q)). Faces are lower-dimensional

simplices contained within a simplex. For example, s.face(1)
returns all the 1-simplices of a simplex s, which are edges.

Cofaces are all simplices that contain the given simplex. For

example, s.coface(n) returns all the n-simplices in which

simplex s is a face. The R
n triangulation size is adjustable

with a parameter λT , which also determines the final manifold

triangulation size. In Figure 2, λT is each triangle’s height.

Smaller triangles produce intersection points that are closer to

each other, i.e., a finer manifold triangulation.

V. ALGORITHM

In this section, we discuss the integration of SDCL, Coxeter

Triangulation, and infeasibility proof construction. Our overall

algorithm operates by integrating SDCL and infeasibility proof

construction (see Figure 1). The algorithm has three components

and correspondingly three parallel threads. One thread runs a

PRM, which provides the samples we use as data for training

the manifold. The SDCL thread uses these samples to train the

manifold and then samples points on the manifold. If we sample

any Cfree points on the manifold, we add these points back to

the PRM. Lastly, the infeasibility proof construction thread uses

the manifold and manifold points from the SDCL thread for

triangulation (see Sec. V-A and Sec. V-B) and checking (see

Sec. V-C). If the triangulation passes the check, then we have an

infeasibility proof. If the PRM finds a plan, we return the plan.

The algorithm terminates with either a plan or an infeasibility

proof. This algorithm structure ensures quick narrow passage

motion planning by running infeasibility proof construction

and SDCL in separate threads.

A. Codimension One Coxeter Triangulation

The proof construction thread takes the most recent manifold

and triangulates it. Previous work [12] used tangential Delaunay

complexes [45], [46] to triangulate the manifold, However,

triangulation with tangential Delaunay complexes requires

post-processing to fix inconsistencies, which scales poorly to

higher dimensions, and tangential Delaunay complexes does not

parallelize well. In this work, we employ and adapt the Coxeter

triangulation algorithm [14]. In the manifold tracing algorithm,

we implement a new method to calculate intersection points

between line segments and the manifold. We also parallelize

the manifold tracing iterations. Then, we use the output from

manifold tracing to concurrently construct the triangulation

and at the same time locally fix the triangulation with elastic

updates when there are parts of it in Cfree.

1) Manifold Tracing: We collect all points sampled on the

manifold into a set Qseeds in the SDCL thread. The inputs

to manifold tracing are the learned manifold and Qseeds. In

our case, the learned manifold is always (n-1)-dimensional for

C in R
n. This means the codimension is always one and the

output simplices are always 1-simplices, i.e., line segments.

Algorithm 1 describes the parallelized manifold tracing.

Two features enable concurrent implementation of man-

ifold tracing. First, the final collection of intersecting line

segments produced by manifold tracing is unaffected by the

graph traversal order because all neighboring line segments

are interconnected in CTR (see Figure 2b) and would be

visited regardless of the ordering. Second, we have a set of

manifold points Qseeds from the SDCL thread. Consequently,

we parallelize manifold tracing by starting from multiple

seeds Qseeds in different threads. This parallelization facilitates

triangulation in higher dimensions.
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Algorithm 1: Parallel Manifold Tracing

Input: CTR; // R
n Coxeter triangulation

Input: F (q); // Up-to-Date manifold

Input: Qseeds; // Seed points on manifold

Output: Ls; // Intersecting line segs

1 Q← ∅; // Empty queue for line segs

#pragma parallel for

2 foreach q ∈ Qseeds do

3 ls← locate(q); // locate starting

simplex, return its line segments

4 Q.add(ls);
5 Ls.add(ls);

#pragma parallel for

6 repeat

7 ls← Q.pop();
8 foreach c ∈ ls.coface(2) do

9 foreach l ∈ c.face(1) do

10 if l /∈ Ls & l intersects F then

11 Q.add(l);
12 Ls.add(l);

13 until Q = ∅;

While finding intersecting line segments in Algorithm 1, we

must also calculate the intersection points. We find intersection

points between line segments and the manifold using two-

point bracketing [47]. A line segment intersects the manifold

if and only if its endpoints are on opposite sides and thus

produce manifold function values with opposite signs. Given

our manifold function F (q) and line segment endpoints v1

and v2, an intersection exists only when F (v1) ∗ F (v2) < 0.

We find the intersection by updating bracket v1,v2 using the

false-position method [47], [48] (see Algorithm 2). Figure 2b

shows the CTR in the 2D scene, and Figure 2c shows the

result of manifold tracing, including the line segments and their

intersection points with the manifold.

Algorithm 2: Calculate Intersection Point

Input: F (q); // Manifold function

Input: v1,v2; // Line segment vertices

Output: p; // Intersection Point

1 repeat // False-Position [47], [48]

2 p← v1F (v2)−v2F (v1)
F (v2)−F (v1)

;

3 if F (p) ∗ F (v1) > 0 then v2 ← p;

4 else v1 ← p;

5 until |F (p)| < τ ; // within tolerance τ

When manifold tracing returns, the manifold must be closed.

We do not provide any boundaries of the manifold to do

manifold tracing, so if the manifold is not closed, the graph

traversal would not terminate because there would always be

neighboring line segments in CTR that intersect the infinitely

extending manifold. In this sense, the triangulation step also

proves that the manifold is closed, which is one of the

requirements in the definition of an infeasibility proof.

Algorithm 3: Construct Triangulation

Input: Ls; // Line segments

Input: Ps; // Line to intersection map

Output: T ; // Triangulation of manifold

1 M ← {} ; // Concurrent hash table

#pragma parallel for

2 foreach l ∈ Ls do

3 foreach c ∈ l.coface(n) do

4 M [c].add(Ps[l]);

5 T ← collect-values-for-each-key(M);

2) Construct triangulation: We next construct the triangula-

tion using the line segments and corresponding manifold inter-

section points output from manifold tracing. Since we always

have codimension-one manifolds, we develop a faster routine

to construct the triangulation composed of (n-1)-simplices.

The algorithm supports efficient parallel construction of the

triangulation by incorporating a concurrent hash table [49],

[50] (line 1) for data shared between threads. We also perform

elastic updates (see Sec. V-B) to fix areas on the triangulation

that leave the obstacle region.

Algorithm 3 describes the triangulation construction. We

start by iterating through the set of line segments. For each line

segment, we find its n-dimensional cofaces by querying the

permutahedral representation of CTR, which is an n-simplex

in CTR for R
n configuration space. Different line segments

may have the same n-dimensional coface, since an n-simplex

has n ∗ (n − 1) lines segments. We save each n-simplex

and its corresponding line segments’ intersection points to

the concurrent hash table (line 4). The intersection points of

an n-simplex’s line segments with the manifold form facets

of the triangulation. By grouping all the facets, Algorithm 3

constructs the manifold triangulation. Figure 2d shows the

manifold triangulation in the 2D scene. Next, we discuss the

elastic update procedure to correct Cfree triangulation vertices.

B. Elastic Triangulation Updates

We locally update the triangulation to ensure containment in

Cobs. When iterating through line segments, we check whether

manifold intersection points are in Cobs. An intersection point

in Cfree means that part of the manifold is in Cfree. Generally,

we could retrain a new manifold and re-triangulate. However,

to save the cost of another triangulation, we locally update the

triangulation to correct intersection points in Cfree. Conceptually,

these updates “stretch” the vertices of the existing triangulation

to fit a newly trained manifold as if the edges are elastic, so

we call this procedure an elastic update.

Algorithm 4 summarizes the elastic update, and Figure 3

illustrates a 2D case. For an intersection point in Cfree, the

elastic update adds the point to roadmap G (line 1), then

projects the intersection point onto the most recent manifold

by solving the following optimization problem (line 3),

min
q
m

abs (F (qm))

s.t. qm ∈ C ,
(1)

where F is the function of the learned manifold, and qm is the

projected manifold point. This formulation is the same as that
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Fig. 3: Elastic triangulation in a 2D configuration space. In
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is fixed using the projection point on the new manifold; In the

second transition, a vertex of a facet’s bisection is fixed.

used to sample manifold points in SDCL. If we successfully

project the point qm and it is in Cobs, we use this projected

point to replace the original intersection point in the final

triangulation. If qm is instead in Cfree, we add this projected

point to roadmap G (line 5), retrain the manifold (line 6, line 7),

and re-project the point until we find a projected manifold point

in Cobs or the projection fails. If projection fails, which means

the optimization problem in Equation 1 fails to solve, then q

is ∅ and we re-triangulate. The updated triangulation remains

valid since we only change the positions of vertices and not

the connections of the edges. The resulting triangulation may

have crossings but it is not a concern as long as all facets are

in Cobs, which we discuss next.

Algorithm 4: Elastic-Update

Input: G; // Planning Graph

Input: q; // Point in Cfree
Input: F (q); // Up-to-Date Manifold

Output: G, F , q; /* Planning Graph, New

Manifold, New Point */

1 add-sample(G, q);
2 loop

3 q ← project-to-manifold(q, F );
4 if q ∈ Cobs or q = ∅ then return;

5 add-sample(G, q);
6 Prest, Pgoal ← Acquire-Input-Data(G);
7 F ← train-SVM(Prest, Pgoal);

C. Facets Bisection and Checking

We need to check if the manifold triangulation is contained

in Cobs. The triangulation produces a set of (n-1)-simplices

(facets). Previous work [13] used configuration space pene-

tration depth to check each facet, which is computationally

expensive and not always possible to robustly determine,

especially in high dimensions. In this work, we propose a

simplex bisection method that recursively checks all vertices

of decomposed simplices until all vertices are enclosed in a

hyper-ball with a small radius εb. This method is analogous

to the local planner interpolation used to add new samples to,

e.g., PRMs and RRTs [7], [51]. Here, we extend line segment

checks to simplex checks.

We divide a simplex into smaller simplices with recursive

subdivision [52]. Recursive subdivision picks two vertices of

the simplex each time and cuts through the midpoint of the

two vertices and all other vertices, which bisects a simplex. We

pick the longest edge to cut each time, which provides better

quality simplices and requires fewer checks [53].

While bisecting and checking simplices, we locally update

bisected simplices’ vertices in the same way as the elastic

update during triangulation (Algorithm 4, Figure 3). If the

elastic update succeeds, then we avoid another iteration of

triangulation and checking facets. If elastic update fails, then

we re-triangulate with a smaller λT (smaller Rn triangulation

size) and check the facets again. If all simplices are checked

and are in Cobs, then we have an infeasibility proof.

To summarize, we have three threads running in parallel and

exchanging data. The SDCL thread takes the planning graph

from the PRM, learns a manifold, and samples the manifold.

The proof construction thread takes the manifold and samples,

generates a triangulation, and checks the triangulation. Also,

both the SDCL thread and the proof construction thread provide

samples to the planning graph which helps planning in narrow

passages. The algorithm outputs a plan or an infeasibility proof

given long enough time.

VI. EXPERIMENTS

In this section, we show the experimental results of the

algorithm in multiple serial manipulator scenes. We run

experiments in 4-DOF scenes to compare the current algorithm

with previous work. We perform experiments in 5-DOF scenes

to show how the algorithm scales in higher dimensions. We
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also show how the algorithm performs in feasible plan scenes.

We run 30 trials for each experiment.

To leverage parallelism in several parts of our algorithm,

we run our experiment on a multi-core system with NVIDIA

TU102 GPU and a dual CPU AMD EPYC 7402 with 24 cores

per CPU. We adapt PRM [7] in OMPL [9] to run in parallel

with our infeasibility proof construction thread and SDCL

thread. We solve the nonlinear optimization problems using

sequential least-squares quadratic programming (SLSQP) [54],

[55] in NLopt [56]. We adapt the Coxeter triangulation

module in GUDHI [57] for triangulation. We train the RBF-

kernel SVM using ThunderSVM [58], which supports GPU-

accelerated SVM training. We use the concurrent hash table in

libcuckoo [49], [50] when parallelizing the triangulation step.

We check collisions using the Flexible Collision Library [59].

We use Miniball to calculate the smallest enclosing ball

when dividing and checking simplices [60]. We model robot

kinematics using Amino [61].

A. 4-DOF Experiments

The 4-DOF experiments setup is the same as in [13] for us to

compare the results. We have two scenes, one with a shoulder-

elbow robot and the other with a SCARA robot [62]. Figure 4a

and Figure 4c show these scenes. Experimental results are in

Table I. In both scenes, we use λT = 0.1 for Rn triangulation.

The mean runtime is two orders of magnitude faster than the

result in [13].

B. 5-DOF Experiments

We setup two 5-DOF experimental scenes. The first uses

a manipulator structure similar to the PackBot [63] (see

Figure 4d). The goal in the scene is to reach inside the shelf. In

this scene, we use λT = 0.1 for Rn triangulation. The second

scene uses a manipulator similar to the Universal robot [64] (see

Figure 4b). Since the Universal robot is 6-DOF, we use a round

end-effector and fix the last joint to make it 5-DOF. The goal is

to reach the target position in a clustered tabletop environment.

In this scene, we use λT = 0.08 for R
n triangulation. Both

scenes’ runtime results are in Table I.

C. Feasible Plan Experiments

We also run experimental scenes where plans exist in narrow

passages. The goal is not to thoroughly compare with other

motion planners, since these results would be similar to the

results of using SDCL with PRM without the infeasibility proof

part, which is shown in previous work [15]. Instead, we wish

to demonstrate that this new algorithm structure maintains the

capability to efficiently solve these problems.

We modify the 5-DOF infeasible scenes to make narrow

passages such that plans exist in the scene but are still hard to

find. For the tabletop environment in Figure 4b, we move the

cylinders to create more room for the end-effector to pass. For

the shelf environment in Figure 4d, we move the two obstacles

further away from each other and the arm. We also use the

same modified Figure 4b scene with a square-end effector for

setting up a 6-DOF narrow passage problem.

START

GOAL

(a) 4 DoF robot scene.

START

GOAL

(b) Universal robot scene.

START GOAL

(c) SCARA robot scene.

START

GOAL

(d) PackBot scene.

Fig. 4: 4-DOF and 5-DOF Experiment Scenes.

Total (s) Cox (s) Check (s)

4-DOF 2.60 ±0.75 0.95 ±0.76 1.00 ±0.31

SCARA 6.19 ±4.05 1.76 ±1.25 1.64 ±0.70

Packbot 344.64 ±139.60 88.25 ±53.14 251.85 ±92.04

Universal 186.47 ±53.44 22.33 ±8.25 162.42 ±52.36

TABLE I: Runtime results for 4-DOF and 5-DOF manipulators,

mean (s) ±STD, averaged over 30 trials. “Cox” is for Coxeter

triangulation, including manifold tracing and construction of

triangulation. “Check” is for the bisection and checking.

We run 30 trials for each scene. Our algorithm successfully

terminates with a plan for each scene and each trial. Table II

shows the results. We compare our planner with RRT-Connect

as a baseline to show these are actually difficult, narrow

passage motion planning problems. We give a 300 seconds time

limit to run RRT-Connect with the three scenes. Our results

are similar to [15], significantly outperforming the baseline

planner. This experiment also shows that attempting to construct

an infeasibility proof does not significantly impact planning

performance in scenes with feasible plans.

VII. DISCUSSION, ANALYSIS AND FUTURE WORK

A. Parallel algorithm analysis

As computational hardware continues to scale primarily

through parallel rather than serial performance, algorithmic

designs leveraging parallelism are increasingly critical. Prior

work has used multi-core CPUs to parallelize sampling [23],

[65] or nearest neighbor search [66], GPUs for nearest neighbor

search [67] and collision checking [68], and FPGAs for collision

checking [69]. In our algorithm, we have parallelized all the

main components. This includes manifold learning, utilizing off-

the-shelf GPU-based SVM training [58]; manifold sampling; the

triangulation step, facilitated by adapting Coxeter triangulation;

and the facet bisection and checking step.
Feasible Plan Experiments (30 trials) mean/std (s)

5-DOF Tabletop 5-DOF Shelf 6-DOF Tabletop

Our Algorithm 1.74 ±0.94 2.00 ±0.87 1.63 ±0.68

RRT-Connect 187.51 ±104.64 240.34 ±79.58 236.32 ±92.30

RRTC Solved 20/30 15/30 14/30

TABLE II: Experimental results for feasible plan experiments.
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Speedup with Increasing Parallel Threads (50 trials) mean±std (s)

12 vs 6 24 vs 12 48 vs 24

Algorithm 1 1.68 ±0.09 1.59 ±0.11 1.25 ±0.16

Algorithm 3 1.86 ±0.25 1.59 ±0.22 1.40 ±0.29

TABLE III: Parallel algorithm speedup test over 50 trials.

Our key development is a concurrent variation of Coxeter

triangulation to leverage available hardware parallelism. The ge-

ometric structure of Coxeter triangulation enables concurrency.

Compared to tangential Delaunay complexes, the calculation

of Coxeter triangulation is primarily element-wise, leveraging

the manifold’s information effectively without relying on (and

synchronizing with) neighboring points.

We analyze our parallel Coxeter triangulation using the

conventional work/span approach—where work represents time

to execute if on a single processor, and span represents time

to execute if given unlimited processors [70]—to determine

speedup Sp as the ratio of sequential Ts and parallel Tp

execution Sp = Ts/Tp. The main iterations in Algorithm 1

and Algorithm 3 are all parallel, meaning span is the length of

a single iteration and offering a theoretical linear speedup in

number of processors, Ts/Tp = p/s.

However, the speedup is usually less than linear in practice

due to the critical sections, including those in the concurrent

hash tables [49], [50]. We empirically test speedup using 6, 12,

24, and 48 cores (see Table III). The algorithm is faster with

more cores but the speedup is less than linear. As the number

of threads increases, contention intensifies due to shared data

structures, leading to a decrease in speedup.

B. Hyperparameters

An important parameter in the triangulation step is λT , which

controls the size of the R
n triangulation. Smaller λT produces

a finer triangulation of the manifold, which also takes longer

to complete. λT is adjusted online after each dividing and

checking step. If the bisection and checking step fails, it means

there are failed elastic updates, and the manifold needs a finer

triangulation, so we need to triangulate the manifold again

with a smaller λT . We multiply λT with a constant between

0 and 1 after each failed dividing and checking step. In all

experiments, we use the value 0.9. With an iteratively smaller

λT , the algorithm finishes the infeasibility proof construction

eventually. Choosing a proper value for λT is also important

and affects the total runtime. If λT is too small, then it takes

longer for the triangulation step to complete. If λT is too

large, then the algorithm needs to run many more iterations

of triangulation and checking to reduce λT before it returns,

which also increases overall runtime.

Other hyperparameters are εb, the facets’ smallest enclosing

ball radius, and τ , in Algorithm 2. εb must be small enough to

capture the “thinnest” obstacle region, which is related to the

definition of ε-blocked, but not too small since it would increase

the number of bisections. If εb is too large, the algorithm may

produce false positive results. The value of τ determines how

close the triangulation vertices are to the manifold. Using a τ
too large may cause discrepancies between the triangulation

and the manifold. We use 0.05 in all experiments.

C. Scalability

Our current algorithm and implementation scales to find

infeasibility proofs for 5-DOF manipulators, though it also is

capable of quickly finding plans in feasible scenes for higher-

dimensional manipulators. In the 5-DOF experimental results,

checking the triangulation’s facets takes a large portion of the

total runtime. We also run preliminary tests on 6-DOF scenes,

with a similar setup in Figure 4b. The algorithm completes

learning, sampling, and triangulation until all vertices of the

triangulation are in Cobs, which on average takes less than 40
seconds with λT = 0.08. However, our current approach to

bisect and check facets dominates running time and did not

complete within 120 minutes. Further scaling of infeasibility

proof construction will require a faster collision checking

backend [71] or alternative approaches to facets checking, which

remains an area of future work. Another potential way to scale

this method is by using sub-space decomposition [30], [72],

[73], where infeasibility proofs can be constructed in lower

dimensions and remain valid in higher dimensions.

VIII. CONCLUSION

In this work, we introduced an asymptotically complete

motion planner that combines SDCL and infeasibility proof

construction. We enhance the Coxeter triangulation with elastic

updates during triangulation and checking, utilizing parallel

computing for faster processing. Our experiments in 4-DOF and

5-DOF scenarios demonstrate the algorithm’s efficiency. For

future work, infeasibility proofs can be applied in a multi-query

setting for addressing higher-level planning problems [1]–[4].
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