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Physics-based Communication Constraints∗
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Abstract—In many exploration scenarios, it is important for
robots to efficiently explore new areas and constantly communi-
cate results. Mobile robots inherently couple motion and network
topology due to the effects of position on wireless propagation—
e.g. distance or obstacles between network nodes. Information
gain is a useful measure of exploration. However, finding paths
that maximize information gain while preserving communication
is challenging due to the non-Markovian nature of information
gain, discontinuities in network topology, and zero-reward local
optima. We address these challenges through an optimization and
sampling-based algorithm. Our algorithm scales to 50% more
robots and obtains 2-5 times more information relative to path
cost compared to baseline planning approaches.

I. INTRODUCTION

Many robot tasks combine the need for motion and commu-
nication. Inspection, exploration, and search and rescue tasks
all require robots to move, observe, and maintain constant
communication both between robots and with a human op-
erator. For instance, robots may need to stream sensor data to
human operators in search and rescue scenarios or constantly
receive instructions from humans to inspect a potential haz-
ard [1]. Furthermore, many scenarios—especially search and
rescue or exploration—present challenges for communication
due to distance and occlusion between robots. To accomplish
tasks with communication requirements, the robots must ar-
range themselves to both maintain communication and reach
necessary positions.

In exploration scenarios, we often want to explore a large
area in a limited time. We quantify exploration using in-
formation gain [2], [3], [4], [5], a metric for how much
unknown space is revealed. However, the information gain
at a particular configuration in a path inherently depends on
the history of configurations. That is, a robot observing an
initially unknown feature would gain more information from
the first observation than from subsequent observations. This
dependence on the history of configurations means information
gain is non-Markovian when the state is only the current
robot configuration. To use information gain as a metric,
we must either encode the history of robot configurations in
the state or consider an entire path when finding an optimal
answer. While adding extra information to each configuration
would make the problem Markovian, it would also drastically
increase the dimensionality of the problem. Furthermore, a
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Fig. 1: A robot team exploring an urban area. Unknown re-
gions are shown in black. Our algorithm optimizes information
gain while maintaining communication between the team and
base station.

configuration in which robots observe fully known space has
a local information gain of zero and a local gradient of
information gain of zero; such configurations are local optima
with zero-reward, confounding the direct use of gradient-
based methods. Finally, communication requirements limit the
valid configuration space, requiring a mapping from robot
configurations to underlying network topologies.

We present an optimization and sampling-based approach
for a team of robots to find locally optimal paths with a
non-Markovian objective and maintain network connectivity
under a physics-based radio communication model (Fig. 1).
First, we identify a heuristic final configuration with both
positive information gain and all robots in communication
via optimization, addressing the zero-reward local optima
(Sec. IV-A). Second, we find feasible paths that maintain
communication and reach the final configuration via sampling-
based planning (Sec. IV-B). Third, we optimize the paths to
maximize information gained relative to a cost, addressing
the non-Markovian objective (Sec. IV-C). We demonstrate
the approach using a physics-based communication model
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(Sec. V). Finally, our evaluation shows improved scalability
to many robots and improved efficiency compared to baseline
sampling-based methods (Sec. VI).

II. RELATED WORK

Our work combines communication constrained information
gain, multi-robot exploration, and motion planning.

Information gain has been used as an accurate metric for
exploration problems with a single robot. Prior approaches
to maximize information gain either quickly find and move
towards a single configuration with high information gain [6],
[7] or use optimization [2] to find a locally optimal path.
Our work expands the single robot case to scale to large,
communicating teams while maintaining locally optimal paths.

Active Information Acquisition problems require a team
of robots to learn some feature of the environment—e.g.,
location of unknown markers or a model for gas concentration.
Leading approaches [8], [9] focus on solving this problem
by creating a state composed of a robot configuration and
extra information to make the problem Markovian, allowing
them to consider just the previous state in the algorithm.
When the additional information encoded in the state is small,
reducing the problem to a Markovian system allows for these
algorithms to sample or iterate over many states efficiently.
However, for exploration problems, even simple abstractions
of the space—e.g., Booleans for whether or not an unknown
point is visited—causes exponential growth in the state space
and the number of possible states that can be associated with
a single robot configuration, since every additional unknown
point doubles the possible permutations of visited unknown
points. Our work instead uses a state comprised of solely robot
configurations to avoid this growth in state size, though we
must instead address a non-Markovian problem.

Multi-robot exploration must balance scalability to many
robots, efficient management of the robots, and potentially
communication requirements. Leading approaches that neglect
communication have used decentralized control [10], [11], [12]
and information gain reward [3], [4], [5] to achieve scalable
and efficient algorithms at the cost of decreased connectivity.
Algorithms that define static network requirements (i.e., direct
communication links between robots are defined initially and
cannot be broken) [13] allow for scalability while maintaining
communication, but may not achieve every objective to explore
or observe, or it may only do so at a higher cost (e.g., distance
traveled). Algorithms that permit a dynamic network must
instead maintain total graph connectivity [14], [15], [16] and
may accomplish more tasks at a lower cost than the static
case. All of these approaches typically address one or two
of the main problems associated with multi-robot exploration.
Our work uses of optimization to scale to large numbers of
robots and ensure communication, while using information
gain to efficiently prioritize areas to explore, allowing us to
address all three requirements of scalability, efficiency, and
communication.

High-dimensional motion planning must balance optimality
and completeness with scalability. Heuristic search methods—
e.g., A* [17], AD* [18], or ARA* [19]—provide optimal

results but are not as widely used for high-dimensional
problems as alternatives. Sampling-based methods scale well
to high-dimensional problems, but only offer probabilis-
tic completeness [20] or asymptotic optimality [21]. Con-
versely, optimization-based approaches such as CHOMP [22],
STOMP [23], and TrajOpt [24] are often highly-efficient
but typically guarantee only local optimality rather than the
convergence, completeness, or global optimality guarantees of
other methods. We integrate a sampling-based approach [25]
and an optimization similar to [24] to maximize information
gain and maintain communication constraints.

Communication-constrained motion planning combines mo-
tion planning with a requirement to maintain network con-
nectivity. Prior work has applied discrete search [26], [27],
decentralized control [28], [29], and sampling-based ap-
proaches [30], [31]. Such works typically construct paths to
a specific goal position; it is possible to find positions with a
high amount of information gain [6], [7] and then plan paths
there. However, we show that our formulation—optimizing
information gain along the entire path—results in more infor-
mation gained relative to the amount of time to compute the
path. Furthermore, prior work on communication-constrained
motion planning typically used range-based communication
models, whereas we plan using a more accurate physics-based
model of radio propagation.

III. PROBLEM DEFINITION

We address a multi-robot communication and exploration
problem, where a robot team must maintain communication
among the team and with a base station, avoid physical
collisions, and maximize information gain relative to a cost.
We define the problem in terms of deterministic functions for
network connectivity, collision distance, information gain, and
cost as follows.

Definition 1. A multi-robot communication and exploration
problem is a Σ =

(
I,X , x[0], b,Ff ,Fc,Fg, C

)
where,

• I is a finite set of robots
• X = m × m · · · × m is the multi-robot configuration

space, where each m is the position of a single robot—e.g.
SE(2), SE(3), or Rn.

• x[0] ∈ X is the initial configuration of all the robots.
• b ∈ m is the position of the base station.
• Ff : m 7→ R is a signed distance function indicating

separation from the closest obstacle. Negative distances
indicate penetration (collision) with an obstacle.

• Fc : m × m 7→ R is a signed communication function.
Positive Fc indicates that communication is possible
between the two positions.

• Fg : ([0, 1] 7→ X ) 7→ R+ is a function that maps from a
path in X to the information gain over that path.

• C : ([0, 1] 7→ X ) 7→ R+ is a function that maps from a
path in X to a cumulative cost—e.g., distance, time, or
energy.

The configuration space X is the union of disjoint valid
space Xvalid and invalid space Xinvalid. The valid space Xvalid
is the region where there are no collisions (Ff is positive for
every robot) and where the base station can communicate with
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every robot through one or more network hops. A network hop
is possible when the communication function Fc for the two
nodes is positive.

The solution to Definition 1 is a path σ that is feasible and
maximizes information gain relative to the cost.

Definition 2. An information-optimal path σ solves,

max
σ

Fg (σ)

C (σ)

s.t. σ[0, 1] ∈ Xvalid ∧ σ(0) = x[0] .

Additionally, we assume that most of the information gain
will come from the final points on the path, which is appropri-
ate when the robots are exploring previously unexplored areas.
Other works have achieved promising results by considering
information gain only at the final point [6], [7], indicating that
this assumption is reasonable.

IV. ALGORITHM

We solve the multi-robot communication and exploration
problem using a hybrid of sampling and optimization to over-
come the non-Markovian objective and zero-reward optima
problems while scaling to large teams. The algorithm (see
Alg. 1) follows three steps. First, we address the zero-reward
local optima by finding a heuristic final configuration with
positive information gain (see Sec. IV-A). Second, we use the
heuristic configuration as a goal to find a feasible path via
bidirectional, sampling-based planning (see Sec. IV-B). Third,
we overcome the non-Markovian objective by optimizing the
feasible path according to Definition 2 (see Sec. IV-C).

Algorithm 1: Information Gain Optimization

Input: b,Ff ,Fc,Fg, C, x[0]; // Definition 1
Output: σopt; // Definition 2

1 function isValid(x) is
2 foreach xi ∈ x do // Physical Collision
3 if Ff (xi) ≤ 0 then return False;

// Sec. IV-A2: Comms. constraint
4 if calculateComCost (b,Fc, x) 6= 0 then
5 return False;

6 return True;

7 Xvalid ← {x ∈ X |isValid (x)};
// Sec. IV-A: Heuristic config

8 repeat// find non-zero info-gain
9 x, r ← goalConfiguration (Fg,Xvalid);

10 until r 6= 0;
// Sec. IV-B: Feasible path

11 σfeas ← sampleBasedPlanning
(
x[0], x,Xvalid

)
;

// Sec. IV-C: Optimize info-gain
12 σopt ← trajectoryOpt (σfeas,Fg, C,Xvalid);
13 return σopt

A. Heuristic Final Configuration

We first evaluate a heuristic to maximize information gain
at a single configuration (line 8). The heuristic configuration

Fig. 2: Robots team and corresponding, valid, communication
graph. Communication is possible along zero-weight edges
(solid lines). Communication is not possible along nonzero-
weight edges (dashed lines).

is the solution to the following,

max
x∈X

Fg (x)

s.t. x ∈ Xvalid .
(1)

Previously explored areas may create zero-reward local
optima for the heuristic configuration, so we ensure that
information gain is non-zero. Since a single configuration is
lower-dimensional than an entire path, it is faster to identify
the zero-reward local optima and restart the optimization here
compared to optimizing the entire path.

We define two constraints to ensure that the configuration
is in Xvalid. First, the configuration must be free from physical
collisions. Second, all robots and the base station must be able
to communicate at the configuration.

1) Collision-Free Constraint: The robots must maintain
positive clearance from every obstacle.

Ff (xi) ≥ 0 ∀i ∈ I , (2)

where xi is the robot i’s position. For a position defined in a
Cartesian configuration space, the derivative of Ff for robot
i is the derivative of Euclidean distance between i and the
closest object.

2) Communication Constraints: The base station must be
able to communicate with every robot via one or more network
hops. The communication function, Fc, implicitly represents
the configurations with valid communication; we model typical
radio communication in Sec. V. We define the constraints in
terms of Fc by constructing a strongly-connected weighted
graph that represents the possible communication network
topology (see Fig. 2). The graph nodes are the robots and base
station. Each edge weight wij represents the communication
strength between two nodes, according to communication
function Fc. If communication is impossible, wij is negative
value denoting the degree to which communication is impos-
sible. Otherwise, wij is 0.

wij =

{
Fc (xi, xj) , if Fc (xi, xj) ≤ 0

0, if Fc (xi, xj) > 0
(3)

where xi is the position of robot i.
The optimization constraint is that the maximum cost net-

work route from the base station to every node must equal
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zero, indicating that communication is possible from the base
station to any robot. We find this route using a graph search to
calculate the cost to go from the base station to any node. For a
constant network route, the gradient is the sum of the gradients
for each edge weight according to (3). Changes in the route
create discontinuities in the gradient; we empirically show that
the optimization formulation is robust to this nonlinearity (see
Sec. VI).

B. Initial Feasible Path

Next, we find a feasible path from the current configuration
x[0] to the heuristic final configuration found in Sec. IV-A.
The valid space for this path consists of configurations where
robots avoid collisions and can communicate; these require-
ments are the same those of Sec. IV-A defined by collision (2)
and communication (3) constraints. The final configuration
from Sec. IV-A allows for bidirectional search.

In this step, we find a feasible (rather than optimal) path
because our information gain objective is non-Markovian and
contains many local optima with a zero reward. Optimizing
sampling-based methods (e.g., RRT* [21]) do not directly
address non-Markovian objectives such as information gain
over the path. Path optimization does not robustly address
the zero-reward local optima. In such scenarios, we found
that path optimization beginning from an invalid seed will
typically move the final configuration to a valid—but zero-
reward—configuration, resulting in a locally optimal—but
zero-reward—path. Instead, we use the feasible path from
motion planning in this step as an initially valid seed for the
path optimization in Sec. IV-C, ensuring that path optimization
will be at least as good as the feasible path.

C. Path Optimization

Finally, we optimize the feasible path from Sec. IV-B to
maximize information gain. We perform path optimization
over a set of waypoints and we ensure that the segment
between each waypoint is in the valid space. The optimal
path from Definition 2, restated over discrete waypoints, is
as follows,

max
x[0],...x[K]

Fg

([
x[0], x[1]

]
,
[
x[1], x[2]

]
, . . .

[
x[K−1], x[K]

])
C
([
x[0], x[1]

]
,
[
x[1], x[2]

]
, . . .

[
x[K−1], x[K]

])
s.t.

[
x[k], x[k+1]

]
∈ Xvalid ∀k ≤ K − 1 , (4)

where
[
x[k], x[k+1]

]
is a lineally interpolated segment between

step k and k + 1. We ensure any segment is in valid space
by checking collisions using the same continuous collision
checking constraint as [24] and check communication by
discretizing the segment and ensuring that the communication
constraint (3) is met for each discrete configuration.

Once we find an optimal path, the robots explore according
to the path. Then, using the map updates from exploration, the
algorithm restarts to find the next optimal path.

V. COMMUNICATION MODEL

While our problem formulation (Definition 1) and algorithm
(Sec. IV) are independent of a particular communication
function Fc, we consider specifically radio signal power loss

for the experiments in Sec. VI. Many other communication
models have been developed [32], [33], [34], [35], [36],
[37] and also would apply to our framework. Power loss
in particular is an important metric based on the underlying
physics of radio propagation [32], [34]. Moreover, power loss
presents important properties—such as discontinuities—that
pose challenges for optimization.

Power loss between a source and a receiving antenna
may occur for three reasons: distance (pathloss), occluding
objects (shadowing), and reflection in the signal (multi-path
fading) [32], [34]. We combine these three effects to find
received power, Pr, in dB.

Pr = Pr0 − 10n log10 (||xi − xj ||)− vs − ε (5)

Pr0 is the received power at a standard distance (i.e., 1m). The
term −10n log10 (||xi − xj ||) represents pathloss, where n is
the pathloss exponent and ||xi − xj || is the distance between
the robots. The effects of shadowing, vs, are discontinuous
and change when more or fewer objects occlude the straight
line path between two antennas. Term ε represents the effects
of multi-path fading. Prior communication modeling work
estimates parameters Pr0, n, vs, and ε online [32], [34] or
uses standardized static values [38].

We convert (5) to the form of communication function Fc

for static parameters, Pr0, n, and ε and for shadowing vs
as a function of the two nodes’ positions. Our experiments
use standardized values for Pr0, n, and ε from [38]. To
successfully communicate, received power Pr must exceed
some minimum strength s [37], which varies based on the
receiver’s properties (e.g., the antenna). The resulting Fc is,

Fc (xi, xj) = (6)
(Pr0 − 10n log10 (||xi − xj ||)− vs (xi, xj)− ε)− s .

We use a conservative model of shadowing vs that limits
communication to Line of Sight (LoS). If LoS is not present
between positions xi and xj , then vs (xi, xj) has a large value,
M , thus preventing communication.

vs (xi, xj) =

{
0, If LoS (xi, xj)

M, If ¬LoS (xi, xj)
(7)

We calculate the gradient of (7) analytically disregarding
the discontinuity in (7) as we move into and out of LoS. We
show empirically that we are robust to this discontinuity.

VI. EVALUATION

We evaluate the performance of our algorithm for the
environments in Fig. 3. Typical exploration scenarios will
update plans as the map is updated; we evaluate specifically
the planning process in terms of scalability, optimality, and
efficiency. We compare planning efficiency in terms of the
reward for a path divided by the time to compute the path—
i.e., the benefit achieved per second of computation time or
Reward per Computational Second (R/CS). The experimental
environments vary in distribution of unknown space and
difficulty of communication. Unknown space lies in discrete
areas in Fig. 3c and Fig. 3d and is widely distributed in Fig. 3a
and Fig. 3b. Communication is easy to maintain in Fig. 3a,
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(a) A simple room with pillars (b) A hallway with many corridors (c) Hotspot monitoring (d) Spiral hallway

Fig. 3: Maps of the simulated environments used in our experiments. All robots start within the blue circle with the base
station in the center of the circle. Gray points are unknown space.

Our work RRT RRT* Our work RRT RRT*
Simple room (Fig. 3a) 5 robots 10 robots
Total time (stdev) 10.0 (6.1) 1.72 (3.2) 60.4 (0.2) 52.2 (19.1) 7.44 (13.0) 60.6 (0.4)
Reward (stdev) 1.12 (0.74) 0.12 (0.07) 0.38 (0.04) 0.76 (0.48) 0.06 (0.03) 0.21 (0.02)
R/CS (stdev) 0.159 (0.148) 0.12 (0.08) 0.006 (0.001) 0.018 (0.015) 0.012 (0.008) 0.004 (0.000)

Hallway (Fig. 3b) 5 robots 10 robots
Total time (stdev) 25.7 (16.7) 19.9 (17.2) 19.8 (7.7) 58.0 (9.1) 60.1 (0.04) 60.1 (0.04)
Reward (stdev) 0.64 (0.54) 0.10 (0.06) 0.40 (0.10) 0.24 (0.92) 0 (0.00) 0 (0.00)
R/CS (stdev) 0.036 (0.044) 0.007 (0.004) 0.023 (0.012) 0.004 (0.015) 0 (0.000) 0 (0.000)

Hotspot (Fig. 3c) 5 robots 10 robots
Total time (stdev) 5.6 (5.0) 2.3 (2.8) 10.5 (2.65) 38.6 (20.3) 13.7 (20.17) 39.1 (13.54)
Reward (stdev) 0.76 (0.57) 0.06 (0.03) 0.41 (0.08) 0.80 (0.51) 0.05 (0.03) 0.23 (0.03)
R/CS (stdev) 0.186 (0.193) 0.051 (0.44) 0.042 (0.015) 0.027 (0.030) 0.009 (0.006) 0.006 (0.002)

TABLE I: Experimental results. Scores are the average of 30 trials, with standard deviation in parenthesis. We evaluate efficiency
as Reward per Computational Second (R/CS). All methods did not find a non-zero reward on Fig. 3d before the timeout, and
so it is not included in the table.

while it is difficult in Fig. 3b and Fig. 3d due to shadowing
from walls.
A. Baseline Methods

We compare our approach to baselines which ap-
ply communication-aware, sampling-based motion planning
from [30], [39] using frontier positions containing unknown
space [6] to define a goal state. [30], [39], use unidirectional,
sampling-based motion planning to find a communication-
aware path for a group of robots to a user-specified goal; we
define a state as a valid goal for our baselines using convex
hulls of unknown space from [6]. The baselines use RRT [25]
and RRT* [21] to plan paths that preserve communication [30],
[39]; we found that direct use of optimization-based methods
to reach frontiers did not robustly find valid paths with non-
zero information gain. Importantly, the frontiers are positions
for individual robots rather than valid configurations of the
team that maintain communication. Since the baselines do not
provide a goal configuration, we cannot directly apply bidi-
rectional search. As in [30], [39], the baseline RRT and RRT*
are unidirectional, but we bias search towards configurations
with a robot at the frontier. We assume the final configuration
provides most of the information, so we expect shortening to
improve reward (information gain over distance), which holds
in our experiments.

The non-Markovian nature of information gain poses a chal-
lenge for RRT*. Classically, RRT* optimizes the accumulated,
per-configuration objective over a path; however, information
gain depends on the path as a whole. RRT* can also optimize
an objective for a specific configuration—e.g., maximizing the
minimum path clearance (an example in the OMPL tutorial).
Thus, our objective for RRT* is to maximize information gain
at the final configuration in the path.

We apply the baseline methods to maximize efficiency
in terms of reward over computation time, R/CS. Neither

RRT or RRT* fully address the non-Markovian information
gain objective. Instead, we greedily terminate the search after
achieving some level of information gain. The resulting plans
are not optimal, but they are fast to find, which improves
efficiency (R/CS). We terminate the RRT once we find a
configuration with positive information gain. We terminate
RRT* after reaching a configuration that exceeds a ratio of
the sum of information gain from all frontiers; if RRT* times-
out, we return the best plan it found. The specific termination
ratio affects the trade-off between reward and computation.
A higher ratio will take longer, but will find a better plan (or
timeout). A lower ratio will approach the performance of RRT.
In the experiments, we use a ratio of 0.5.

We use the implementations of RRT and RRT* in
OMPL [40], set a timeout of 60 seconds, an extension distance
of one meter, and use the frontier positions from [6] as a
heuristic. If either planner returns before the timeout, we spend
up to the remaining time shortening the path.

B. Experiments
In the experiments, the implementation of our algo-

rithm uses Sequential Least-Squares Quadratic Programming
(SLSQP) [41], [42], [43] to solve for the heuristic final
configuration, RRT-connect [25] in OMPL [40] to find feasible
paths, and gradient descent to optimize the path. Our algorithm
was given a timeout of 60 seconds. RRT-connect used an
extension distance of one meter and simplified the path if it
returned before the timeout.

Both our algorithm and the baseline methods use same
communication model (see Sec. V) and objective, though
the baselines cannot fully address the non-Markovian objec-
tives. We use static communication parameters from the ITU
model [38]: power received at standard distance Pr0 = 39.6db,
pathloss exponent n = 3, and the effects of multipath fading
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are constant and included in Pr0. We conservatively model
shadowing to limit communication to LoS, with the penalty
for no LoS M = 100. We assume a minimum communication
strength s = 10db. We model collisions and check LoS
with FCL [44]. We evaluate information gain, Fg , based on
observations from independent beams [2] with a Euclidean
distance path cost C. We performed the experiments on an
Intel Xeon CPU at 3.40GHz.

Table I shows the average information gain, runtime, and
efficiency over 30 trials for each environment for both five
and ten robots. While our method is typically slower than the
baselines, it gains more reward. In terms of R/CS, our method
is more efficient than the baselines.

All methods have a high variance due to the random
sampling during planning, and, in our method, random seeds to
find a final configuration. In exploration scenarios, we would
typically plan many times as we update the map. While there
would be variance in individual planning times, we expect
the average efficiency over the entire exploration scenario to
approach the mean as in our results.

Both RRT and RRT* were unable to find a path with
10 robots in the hallway due to the high-dimensional con-
figuration space and the limitation to unidirectional search.
A key part of our algorithm is finding locally optimal final
configurations (see Sec. IV-A), enabling bidirectional search.

Our work uses both optimization and sampling and is
thus subject to the general limitations of both methods—
i.e., non-convexity in optimization and narrow passages in
sampling, though our approach does address the small amounts
of non-convexity and narrow passages present in the scenario
in Fig. 3b better than the baselines. Non-convexity during
optimization can arise from communication shadowing ef-
fects, as even convex obstacles in Cartesian space may cause
non-convexity in the configuration space. By restarting the
optimization process when it fails to find a nonzero reward
configuration, we can empirically still find a goal configuration
in environments with a small amount of non-convexity—e.g.,
Fig. 3b. However, when there is a large amount of non-
convex areas—e.g. Fig. 3d—it takes many restarts to find a
nonzero reward configuration, slowing down the approach.
Additionally, narrow areas by themselves pose a challenge
for the sampling-based methods as they may result in nar-
row passageways in the configuration space. For the small
amount of non-convexity and narrow passages in Fig. 3b, our
method was able to find greater reward through optimization
and bidirectional sampling compared to the unidirectionally
sampling baselines. However, when non-convexity is greater
and passages are narrower—e.g., Fig. 3d—our method, along
with the baselines, fails to find a path to a non-zero reward
configuration.

VII. CONCLUSION

We have presented an optimization and sampling-based
approach to find paths that maximize information gain relative
to a cost. Information gain over a path is both non-Markovian,
due to dependence on previous states, and has many zero-
reward local optima. Our approach finds locally optimal paths
by leveraging efficient methods to find heuristic configurations

and feasible paths to use as a seed for path optimization. This
formulation is general to a variety of communication, collision,
cost, and information gain models. Our experimental results
show, for the tested domains, that our approach has a higher
reward per second spent calculating than baseline sampling-
based methods.

In future work, we evaluate the approach with physical
robots and radios, and we will extend the work to allow
robots to disconnect from the network to reach previously
unreachable areas.
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