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I. INTRODUCTION

Recently, an effective motion planning framework called

motion planning in graphs of convex sets (GCS) was de-

veloped in [1] to plan collision-free trajectories while opti-

mizing the time, length, and energy. To guarantee collision

avoidance, obstacles in the task space are transferred to the

joint space using nonlinear optimization to grow collision-

free polytopes in the joint space. To accomplish this, a two

step optimization approach is repeated until it converges.

The first step is to add hyperplanes to a polytope to refine

its shape based on nearby obstacles in the task space. The

second step involves maximizing the volume of an ellipse

inside of the collision-free polytope from the previous step

[2]. This process is repeated to produce a set of collision-

free polytopes that cover large portions of the joint space.

To plan optimal paths within these collision-free regions, the

GCS first builds a graph to represent the possible collision-

free paths in the joint space. Unlike traditional graph-based

motion planning, the vertices in the GCS framework are

dynamic points inside the intersection of the collision-free

regions. The edges in the graph connect vertices that share a

collision-free region, and thus represent all of the collision-

free paths from a starting point to a target point. After

building the graph, the GCS framework minimizes the cost

of each edge by adjusting their vertices while also solving

for the probability that a given edge belongs to the optimal

path. These probabilities and the costs associated with each

edge are then used to determine the optimal path.

A fundamental drawback of the GCS planner is its in-

ability to handle non-convex cost functions. Additionally,

if the graph structure contains a cycles or large numbers

of edges, the quality of the paths produced can severely

decline. Therefore, this work is focused on extending the

GCS framework to include non-convex cost functions as

well as establishing methods that can improve the underlying

graph structure of the GCS planner. The main contributions

of this work are as follows: (1) Developing a method

based on ReLU neural networks to produce sets of locally

linear cost functions to approximate a given non-convex cost

function, (2) Removing cycles and high cost paths from the

underlying graph structure of the GCS planner by using a

graph processing technique.
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Fig. 1. An example set of convex decompositions of a non-convex cost
function is shown.

II. METHODS

A. Approximating Non-Convex Functions as Disjoint Linear

Functions

Convexity is one of the most important properties in opti-

mization because problems with convex costs and constraints

can be solved consistently and efficiently to global optimality

[3]. To optimize non-convex cost functions alongside the

GCS planner, the transformation of a non-convex function

into many locally convex functions is proposed. This can

be realized by using a feedforward neural network with

the ReLU activation function to learn a piecewise linear

approximation of a given function. The neural network can

be decomposed into disjoint convex regions, inside of which

the approximated function is linear [4]. An example set

of convex decompositions of a non-convex cost function

is given in Fig. 1, where each colored region represents

a locally linear cost function. Collision-free regions with

linear costs are obtained by intersecting the neural network’s

convex regions with the collision free polytopes from the

original GCS formulation. The graph of convex sets used

for the motion planning problem is constructed such that its

vertices represent a point on the boundary of two adjacent

collision-free linear regions, and edges are made between

vertices exist on the boundary of the same region.

While the cost function inside of each linear region is a

convex function, the actual cost of the trajectory travelling

through these regions is not necessarily convex. This is be-

cause we must consider the time spent in each region, where

this time is not a constant and is associated with decision

variables of the optimization problem, such as speed. When

time is made to scale with the distance of the path inside of

each region with a constant speed, this resulting cost function

is bilinear, which means it is very unlikely to be convex. To



Fig. 2. An example of the McCormick relaxation applied to the non-convex
function f(x) = 2x3 is shown.

Fig. 3. An equal link length 3R robot following a collision-free trajectory
generated by the proposed method is shown.

convert the cost of the entire trajectory to be convex, the

McCormick relaxation is applied. This relaxation converts a

bilinear function into a linear function that is constrained

within the convex and concave envelopes of the original

bilinear term. An example of the McCormick relaxation is

shown in Fig. 2, where the non-convex function f(x) = 2x3

is bounded by its convex and concave envelopes, the orange

and grenn dotted curves respectively. Once the non-convex

cost function is transformed into a set of disjoint linear

functions and the cost of the trajectory is also convexified, the

GCS planner can be used to solve for optimal cost collision-

free paths using convex optimization.

B. Removing Cycles and High Cost Paths

Because this initial graph structure can contain cycles and

many high cost paths that negatively effect the performance

of the GCS planner, it is essential that some form of

graph pre-processing be done to refine the underlying graph

structure. Both traditional and optimization-based methods

can be used, each with important benefits and drawbacks [5].

This work utilizes traditional methods of graph processing to

solve for the k-shortest paths, which will return k low cost

cycle-less paths from the original graph. Yen’s algorithm is

used to solve this problem as it provides a good balance

between computational efficiency and memory overhead.

III. RESULTS

The above proposed motion planning algorithm is eval-

uated on a planar 3R robot with equal link lengths. The

(a) (b)

Fig. 4. A trajectory generated by the proposed method is shown. The
trajectory is projected onto the θ1-θ2 plane in (a) and θ2-θ3 plane in (b).

starting point and target point are randomly selected, and

there exists three obstacles in the task space, as shown in Fig.

3. The algorithm is applied to compute an optimal trajectory

to avoid the three obstacles and while maximizing the worst-

case failure tolerance cost function along the trajectory. The

worst-case failure tolerance is defined as the minimum of

all the possible minimum singular values of the Jacobian

after a locked joint failure, which is a non-convex function

and represents the worst-case motion ability of the robot

after an arbitrary locked joint failure. Fig. 4(a) and Fig. 4(b)

show the computed joint trajectory projected onto the θ1-θ2
plane and θ2-θ3 plane, respectively, and Fig. 3 shows the

corresponding end-effector trajectory in the task space. The

total cost function value of the computed trajectory is 5.332.

The k-shortest path finding took approximately 6 seconds,

and the convex optimization used to compute the optimal

trajectory completed in 0.007 seconds.

IV. CONCLUSION AND FUTURE WORK

A novel motion planning algorithm is developed to com-

pute a collision-free trajectory while optimizing non-convex

cost functions based on graph of convex sets. This motion

planning algorithm is evaluated on a planar 3R robot with

equal link lengths. The results show that the proposed method

is capable of producing high quality paths in the presence

of obstacles. In future work, this algorithm will be applied

to higher degrees of freedom robots, such as spatial 4R

and spatial 7R robots, to further prove the effectiveness of

this method. In addition, this algorithms will be compared

with other motion planning algorithms with optimization

abilities, such as PRM* and RRT*, in terms of computational

efficiency and optimality of the results.
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