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I. INTRODUCTION

Robot task and motion planning (TMP) searches for

solutions in a discrete task planning space and continuous

motion planning space at the same time. Because of this

combination, one of the key challenges is the integration

between the two spaces, and completeness properties of the

motion planner impacts the ability to transfer information

between these spaces.

A complete motion planner returns a plan or reports

the non-existence of plans in finite time. However, this

completeness property is hard to achieve. A weaker notion of

completeness is probabilistic completeness, which guarantees

the return of a plan given a long enough time if a plan exists.

Many sampling-based motion planners are probabilistically

complete [1], [2]. If a plan does not exist, a probabilistically

complete motion planner would run forever or until a timeout.

In task and motion planning, this nontermination causes a

dilemma between giving the motion planner more time to

solve or generating a new task plan, since we do not know

exactly whether the plan exists or not.

We discuss the requirements and application of motion

planning infeasibility proofs in TMP, and the potential

to strengthen the completeness properties of TMP. Recent

work [3], [4] addresses infeasibility proofs in pure motion

planning. Infeasibility proof construction runs in parallel

with a sampling-based motion planner, and the resulting

algorithm is asymptotically complete [5], a stronger notion

than probabilistic completeness which guarantees the return

of a plan or infeasibility proof in the limit. Applying a motion

planner with this stronger definition of completeness to TMP

problems offers the potential to resolve the dilemma between

more motion planning time vs. alternative task plans and

further to achieve stronger completeness guarantees in TMP.

II. RELATED WORK

In this section, we give a brief summarization of TMP

works emphasizing the three types of integration between

the task space and motion space [6], [7]: satisfaction-first,

sequence-first, and unified.

For satisfaction-first TMP strategies [8]–[10], continuous

space searches happen first to ensure a set of satisfying config-

urations is available then goes into task planning. Sequence-

first TMP strategies [11]–[17] first create a task plan, then they

generate a motion plan for each action within the task plan.

Unified strategies [18]–[21] alternate between task planning

and motion planning or combine the two into a multi-modal

space to search for solutions. Infeasibility proofs could help

in all three types of integration by removing invalid search

branches in task planning. Some previous work provides

Fig. 1: Example task and motion planning problem where

feasibility is a key issue. The gantry manipulator must move

the three cylinders to the three stations. If the gripper is

holding the cylinder, then there is not enough space above

the block to pass. The task and motion plan must first remove

the block. If instead the block is a fixed obstacle, then the

TMP problem is infeasible.

probabilistic completeness guarantees [8], [12]. Others seek

to find asymptotically optimal TMP solutions [16], [19], [22].

However, previous work rarely discusses infeasibility in TMP.

III. PROBLEM DEFINITION

The inputs to the problem are: the task planning space as a

discrete transition system; full continuous space information

of the objects in the task space and the robot’s description;

the start state and the goal state.

IV. TMP WITH INFEASIBILITY PROOF

In this section, we outline how infeasibility proofs improve

TMP’s search results and completeness properties.

Figure 2 illustrates our strategy. We take the sequence first

strategy similar to [12]. First, the task planner produces a

sequence of discrete actions. Then, for each action in the

action sequence, we try to generate a motion plan. With an

asymptotically complete motion planner, the result is either

a motion plan or an infeasibility proof. If an infeasibility

proof is found, then this information transfers back to the task

planner in the form of additional constraints in the search

problem associated with the task plan. Eventually, if no task

plan exists because of all the constraints added, we may

conclude the TMP problem itself is infeasible.

Generally, there may be additional considerations that

require further attention. One challenge involves the ab-

straction of infinitely many continuous states into a finite

set of task planning states. Another issue is encoding or

incrementally changing the configuration space when the

task space experiences discrete state changes (such as when

grasping an object).

Figure 1 gives an example of a TMP problem that would

benefit from using infeasibility proof. In this scene, the
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Fig. 2: Block diagram of a sequence first TMP strategies

with motion planning infeasibility proof. The infeasibility

information from the motion planning is encoded back to the

task planning side.

robot has three prismatic joints. The X-axis and the Y-axis

move horizontally within the black square region, and the

Z-axis moves vertically. The goal is to move the three yellow

cylinders to the three round yellow stations. There is a blue

block in the middle.

A naı̈ve task plan would be to move each of the cylinders

one by one, that is step 1: move{c1, s1}, move{c2, s2},

move{c3, s3}. However, this task plan does not have a

corresponding motion plan because when the robot is grasping

the cylinder, it cannot pass through the opening on top of

the blue block. In this case, the motion planner generates

infeasibility proofs for the move action of each cylinder at

the current steps. Transferring these infeasibility proofs to

the SAT problem in task planning adds three constraints,

that is step 1: (not move{c1, s1})), (not move{c2, s2}), (not

move{c3, s3}). Eventually, when all possible combinations of

moving blocks to stations are constrained to be invalid, the

task planner generates a new task plan, step 1: move(b), step

2: move{c1, s1}, move{c2, s2}, move{c3, s3}, which moves

the blocks away first, then try to move the cylinders. Also,

if the block is part of the non-movable obstacle, following

similar steps, we cannot find a valid task plan, which means

the TMP problem is infeasible.

It is also possible to use satisfaction-first strategies.

Infeasibility proofs in configuration space create separations

of free regions. Between separations, no motion plan exists.

Using this information, we can generate samples for actions

in the same region to guarantee the existence of motion plans.

V. FUTURE WORK

Infeasibility proofs offer the potential for asymptotic

completeness guarantees in TMP. When infeasibility proofs

in motion planning conclusively remove search branches in

task planning, and when task planning exhausts all search

directions and still cannot find a satisfying solution, it means

no solution to the TMP problem exists. We can analyze the

fixed points of the planning graph [23] to show that a goal

is unreachable.

Currently, the infeasibility proof construction works well

in 5-DoF and takes several minutes. The primary focus is

to improve the overall runtime and scale the algorithm to

higher dimensions since the practical use of infeasibility

proof in TMP requires constant calls to the motion planning

sub-routine. Incorporating infeasibility proofs in TMP also
requires proper “mapping” between the continuous space and

the discrete space, and open issues remain for feasibility

determination when infinitely many configurations map to a

discrete state. We need structured and generalized methods

to encode configuration information to task space properly

and to sample configurations given task-level constraints.
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