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Abstract— Personal air transportation on short to medium
distances, so-called Urban Air Mobility (UAM), is an emerging
trend in modern aviation. Risk mitigation approaches based
on no-flight zones over city centers are not suitable for the
upcoming UAM as the small aircraft are expected to fly in
urban environments. Therefore, further approaches of risk-
aware planning are needed. Since such planning can be com-
putationally exhaustive, common low-risk areas used in risk-
aware trajectories can be determined and used in a roadmap
to support risk-aware planners. Determination of such safe
corridors is not well-studied within the UAM domain, but a
similar task of road centerlines estimation from GPS tracks is
studied in the traffic domain. Thus, we propose to elaborate on
the applicability of the existing methods in the UAM domain.

I. INTRODUCTION

Urban Air Mobility (UAM) stands for personal air trans-

portation on short to medium distances [1], where the number

of small aircraft flying in urban environments is expected

to rise [2]. Air traffic can be considered highly safe due

to its advanced engineering, physical redundancies, and

regulations. Namely, small aircraft are not allowed to fly over

the most risky areas to minimize the crash risk. However,

further restrictions on flyable areas are not sustainable for

the upcoming UAM, as the aircraft are expected to fly over

densely populated areas. Hence, novel approaches to risk

mitigation are necessary.

The risk in a crash case can be ranked based on evaluation

ranging from caused damage to a number of casualties [3],

[4]. Regardless of the risk definition, it can be minimized

by risk-aware trajectory planning. Failure-specific risk maps

are proposed in [5] based on the Risk-A* for finding the

least risky trajectory. The trajectory planner minimizes the

motion cost using heuristic risk-to-goal estimation, exploiting

assumptions about the risk limits. Only failures leading to

total loss of the aircraft control (total failures) are assumed

by the authors. In these failures, the crash location is given

solely by the location of failure occurrence and failure type.

If a failure leading to a partial loss of control (partial

failure), such as loss of thrust, occurs, an emergency landing

is still possible. Thus, the task is to find the least risky

landing location and an emergency landing trajectory toward

it [6], [7], [8]. We proposed a risk-aware trajectory planner

that accounts for partial and total failures in [9]. The RRT*-

based planner evaluates the risk of the samples in the trajec-

tory planning as a sum of risks induced by each considered
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Fig. 1. Risk-aware trajectories pass over low-risk areas such as rivers,
parks, or brownfields, forming safe corridors usable if flying nearby. Safe
corridors roadmap (in yellow) can be used for risk-aware trajectory planning.

failure. The risk induced by partial failures is estimated from

a riskmap obtained by space sampling and risk propagating

inspired by kernel operations. The risk of total failures is

then determined on demand during the planning.

The risk-aware trajectory planning [9] can be demanding,

but risk-aware trajectories tend to be over similar, low-risk

areas called safe corridors. Thus, a safe corridors roadmap

can support risk-aware trajectory planning similarly to roads

for ground traffic; see the concept in Fig. 1.

Safe corridors can be determined from a large set of

pre-computed risk-aware trajectories. Two approaches for

safe corridor extraction have been proposed: (i) based on

k-means clustering [10]; and (ii) self-supervised learning

based on Growing Neural Gas (GNG) [11]. Both methods

provide roadmaps yielding trajectories competitive to the

reference planner. Nevertheless, more advanced graph-fitting

techniques might achieve a simpler roadmap.

Therefore, we propose applying methods from similar road

estimation tasks based on GPS tracks studied in the traffic

domain. The creation of the so-called principal (best fitting)

graph is proposed in [14] to minimize the distance of all GPS

samples to the roadmap and the overall network length. The

fitting is based on the reversed graph embedding technique,

and the graph originates from the minimum spanning tree.

An incremental track insertion algorithm is proposed in [12]

with a guaranteed bound on the output map complexity. The

algorithm starts with a partial track-map matching. Then,

the unmatched portions of the track are inserted into the

map, creating new graph vertices and edges. Finally, the map

edges are updated by the matched portion of the track by the

minimum-link algorithm.

II. CURRENT CHALLENGES

Although the former approaches [10], [11] provide

roadmaps that significantly decrease the computational bur-



(a) Trajectories over city map (b) Safe corridors roadmap (c) Population density

Fig. 2. A heatmap of risk-aware trajectories and results of the safe corridors estimation: (a) risk-aware trajectories over the city map, (b) estimated safe
corridors roadmap (implementation of [12] taken from [13]), and (c) population density layer of the map. The darker the area, the more trajectories pass
through it; the trajectory heading is omitted, and only 2D projection is shown. A strong network of highly used low-risk areas (safe corridors) can be
noticed. The predicted roadmap contains several areas (examples in blue) with wrongly estimated corridors, mainly due to varying widths of safe corridors.

den while yielding competitive risk-aware trajectories to the

reference planner, the resulting roadmaps are relatively too

complex with overlapping edges. So, we propose employing

graph-fitting techniques to determine simplified roadmaps.

Based on our initial deployments, we found that the

methods can be easily employed for a fixed flight altitude.

Example results of direct applying [12] are depicted in Fig. 2.

The results suggest obtaining a neat, efficient roadmap

of safe corridors using traffic domain methods. However,

there is a possibility for improving the results as two main

drawbacks have been identified.

The methods used in the traffic domain assume roads

of similar width, often narrow. Contrary to the width of

safe corridors, that varies significantly. Narrow safe corridors

occur over rivers; wide ones can be found over parks;

see Fig. 2a. Thus, the method struggles over wide low-risk

areas, where multiple corridor segments are found instead

of a reasonable safe corridor, as highlighted by blue circles

in Fig. 2b.

Furthermore, roads are mostly bi-directional, so the traffic

domain methods do not consider trajectory or road orienta-

tions. The safe corridors, however, are one-directional; the

risk at a given configuration is given by possible ground

casualties and damage in the case of failure at that config-

uration, which strongly depends on the aircraft heading at

that configuration.

III. CONCLUSION

Safe corridors are low-risk areas used to increase the per-

formance of risk-aware trajectory planning. Thus, a roadmap

of safe corridors can be an alternative to computationally

exhaustive risk-aware trajectory planning. Determining safe

corridors from existing risk-aware trajectories has been found

to be similar to the task of road centerlines estimation from

GPS tracks studied in the traffic domain. Although these

methods are generally applicable in the studied risk-aware

trajectory planning, their current results are not satisfying

enough as the assumption of road geometry is not valid on

safe corridors in the UAM domain. Thus, a generalization

of the methods toward the UAM remains open, with the

main challenges being the varying width of corridors and

introducing orientation on the roadmap edges.
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