
A Method for Multi-Robot Asynchronous Trajectory

Execution in MoveIt2 (Extended Abstract)

Pascal Stoop

ILT, OST

Rapperswil SG, Switzerland

pascal.stoop@ost.ch

Tharaka Ratnayake

InIT, ZHAW

Winterthur, Switzerland

raty@zhaw.ch

Giovanni Toffetti

InIT, ZHAW

Winterthur, Switzerland

toff@zhaw.ch

Abstract—This work presents an extension to the MoveIt2
planning library supporting asynchronous execution for multi-
robot/multi-arm robotic setups. The proposed method introduces
a unified way for the execution of both synchronous and
asynchronous trajectories by implementing a simple scheduler
and guarantees collision-free operation by continuous collision
checking while the robots are moving.

Index Terms—Robotics, multi-arm, multi-robot, motion plan-
ning, pick and place, MoveIt

I. INTRODUCTION

When dealing with multi-arm / multi-robot setups with

shared workspace, there are two main approaches to plan

and execute trajectories in a collision free way. Firstly, there

is the synchronous approach: All arms (or robots) that are

moving at the same time are assumed to be a single moving

entity, and traditional planning and execution approaches are

used. In the asynchronous approach, trajectories involving the

shared workspace are planned independently, so they have

to be managed by a central entity to avoid collision. This

allows individual arms to operate independently, facilitating

the simultaneous management of multiple unrelated tasks by

multiple arms [1] which could be leveraged by tools like

MoveIt Task Constructor.

By allowing independent motion, asynchronous execution

allows for a more efficient utilization of the arms when

tasks vary in duration. For example, in a packaging facility,

some items need quick packaging, while others require longer,

complex packaging. With asynchronous execution, robotic

arms can be individually assigned tasks of different duration,

avoiding planning and executing combined coordinated mo-

tions for different tasks.

While several works address safe operation of multi-arms

with synchronous execution, fewer deal with asynchronous

execution, either posing it as a multi-agent problem [2], using

trajectory reservation [3], or using online collision detection

as in [4]1. MoveIt2 [5] is the most adopted library for robotic

arm motion planning and execution, but, at the time of writ-

ing, while supporting multi-arms, it only allows synchronous

execution and lacks asynchronous execution.

1The work presented in this paper was developed before and with-
out knowledge of the cited work. Our implementation is available at:
https://github.com/stooppas/moveit2

II. APPROACH

MoveIt functionalities are exposed through the move group

module, which manages and plans motions for specific sub-

sets of joints and links of a robot. The planning scene

component collects the robot’s joint configurations, positions

of links, collision objects in the environment and provides

collision-checking capabilities. The trajectory execution man-

ager handles the execution of planned trajectories. Its key

responsibilities include trajectory splitting, dispatching these

sub-trajectories to their respective controllers and relaying

execution information. With the current implementation of

MoveIt, it is only possible to do synchronized movements,

as for safety reason only a single trajectory can be executed

at the same time.

In order to support asynchronous execution, we introduced

the following changes to MoveIt: 1) Collision detection strate-

gies for multiple trajectories 2) Central execution scheduler

ensuring collision free execution 3) Online collision detection.

A. Central scheduler

To allow the trajectory execution manager to handle mul-

tiple trajectories, the blocking execution that was previously

present has been replaced with a continuous execution queue

(top right in Figure 1). Any new trajectory tn added to the

queue will be collision checked against all currently running

trajectories tr ∈ T . If no collision is expected, tn will be

scheduled for immediate execution and the execution man-

ager will store its information for future collision avoidance.

Instead, in case of expected collision, tn is added to a backlog

queue (bottom right in figure), similarly to the implementation

suggested by Felix von Drigalski in [6]. As soon as the running

trajectory tr that was causing a collision with tn is finished,

tn will be moved from the backlog into the continuous queue

and checked against collisions to be executed again. To avoid

deadlocks and minimize execution duration, all trajectories are

assigned a backlog timeout. If the execution manager is not

able to schedule a trajectory within said timeout, the trajectory

execution aborts, allowing the user to re-plan.

B. Collision Detection

Collision avoidance between a new and a running trajectory

can be addressed by “sweeping” methods that reserve all the

space occupied by an entire trajectory in the workspace (as



Fig. 1. Proposed Trajectory Execution Manager.

done in e.g., [3]). However, this reduces the motion space

available for planning. For this reason, we chose to check for

collision in a time dependent manner.

The default collision checking library in MoveIt is FCL

(Flexible Collision Library), which allows for discrete colli-

sion detection for a single robot state. To be able to check for

collision in a time-variant manner, we will have to discretize

the trajectory and check for every discrete time step. At first

we tried evaluating collisions between a trajectory’s discrete

robot state at each timestamp and the interpolated state of

another trajectory at the corresponding timestamp, but this led

to undetected collisions, so we resorted to use a configurable

parameter for the time step used to break trajectories into

discrete steps. This allows to tune the trade-off between

performance and security. This approach is still of course

sub-optimal, as it won’t detect collisions between discrete

time-steps. To solve this issue, Continuous Collision Detection

(CCD) could be used in a future implementation.

C. Online collision detection

MoveIt incorporates real-time trajectory validity assessment

using collision checking for single trajectories, yet collision

checks only consider a single trajectory as well as the

continuously updated planning scene. This design, meant to

account for a single executing trajectory, may incur in a high

executon overhead due to extensive collision evaluations. A

more efficient approach is sought to accommodate multiple

trajectories while expanding collision checks between execut-

ing trajectories and the planning scene. Our proposed solu-

tion consolidates all robot states from concurrent trajectories

at discrete intervals, subjecting this combined state to self-

collision checks and evaluations against the planning scene.

Discretization strategies to balance efficiency and safety vary,

with the preferred approach involving periodic collision checks

with planning scene updates.

III. CONCLUSIONS AND FUTURE WORK

In this paper we introduced an extension to allow MoveIt2

to support multi-arm / multi-robot asynchronous trajectory

execution. Through a simulated pick and place scenario of two

7 DoF Panda arms in a shared workspace (see Figure 2), we

are currently running experiments that are 1) demonstrating

the correct functioning of the implementation and collision

avoidance logic; 2) proving the advantage of this approach

with respect to synchronous execution for specific workloads;

and 3) measuring the overhead induced by the backlog and

re-planning logic.

Fig. 2. baseline with only one arm [left], two arms synchronous movements
[middle] and two arms asynchronous movements [right]

REFERENCES

[1] Mirrazavi Salehian et al., “A unified framework for coordinated multi-
arm motion planning,” The International Journal of Robotics Research,
vol. 37, no. 10, pp. 1205–1232, 2018.

[2] D. Grady et al., “Asynchronous distributed motion planning with safety
guarantees under second-order dynamics,” vol. 68, 01 2010, pp. 53–70.

[3] C. A. Meehan, M. Roberts, and L. M. Hiatt, “Asynchronous Motion
Planning and Execution for a Dual-Arm Robot,” ICAPS, 2022.

[4] (2022) Gsoc 2022: Simultaneous trajectory execution. [Online]. Available:
https://github.com/ros-planning/moveit/issues/3156

[5] D. Coleman et al., “Reducing the barrier to entry of complex robotic
software: a moveit! case study,” CoRR, vol. abs/1404.3785, 2014.

[6] F. von Drigalski et al., “Robots assembling machines: learning from
the world robot summit 2018 assembly challenge,” Advanced Robotics,
vol. 34, 2020.


