
Temporal Logic Imitation

Yanwei Wang∗, Nadia Figueroa†, Shen Li∗, Ankit Shah‡, Julie Shah∗

∗MIT CSAIL, †University of Pennsylvania, ‡Brown University

Abstract—Learning from demonstration (LfD) methods have
shown promise for solving multi-step tasks; however, these
approaches do not guarantee successful reproduction of the task
given perturbations. In this work, we identify the roots of such
a challenge as the failure of the learned continuous policy to
satisfy the discrete plan implicit in the demonstration. By utilizing
modes (rather than subgoals) as the discrete abstraction and
motion policies with both mode invariance and goal reachability
properties, we show our learned continuous policy can simulate
any given discrete plan. Consequently, the imitator is robust
to both task- and motion-level perturbations and guaranteed to
achieve task success. Project page: https://yanweiw.github.io/tli/

I. INTRODUCTION

In prior work, learning from demonstration (LfD) [1] has

successfully enabled robots to accomplish multi-step tasks by

segmenting demonstrations into subtasks/subgoals [2], phases

[3], keyframes [4], and primitives [5]. Most of these ab-

stractions assume reaching subgoals sequentially will deliver

the desired outcomes. However, successful imitation of many

manipulation tasks with spatial/temporal constraints cannot be

reduced to imitation at the motion level unless the learned

motion policy also satisfies these constraints. For example,

transferring a spoonful of soup without restricting the orienta-

tion of the spoon can fail due to spilling even when the spoon

reaches the target successfully.

We show that successful goal-reaching does not imply

successful task execution in Fig. 1 with a 2D task, where task

success depends on whether a continuous trajectory simulates

a discrete plan of transitioning through the white, yellow,

pink and green regions consecutively. Human demonstrations,

shown in Fig. 1(a), are employed to learn a dynamical system

(DS) policy [6] depicted by the streamlines in Fig. 1(b).

Of all sampled trajectories, only the blue ones succeed in

the task. The red ones fail as they simulate at least one

discrete transition not physically realizable (e.g., white ⇒
pink). The issue is not mitigated by further segmenting the

demonstrations into three subgoals and learning a DS for each

subgoal, as seen in Fig. 1 (c-f). While one can frame this

problem as covariate shift and solve it by asking humans for

more demonstrations [7], we frame it as the mismatch between

a learned continuous policy and a discrete task plan and solve

it by asking humans for a task specification. Specifically, the

core challenges illustrated by this example are two-fold: 1)

Subgoals only impose point constraints that are insufficient

to represent the boundary of a discrete abstraction. 2) The

continuous policy may deviate from a demonstrated discrete

plan and in such cases cannot replan to ensure all discrete

transitions are valid. Instead, our approach employs “modes”

as the discrete abstraction. We define a mode as a set of

robot and environment configurations that share the same

Fig. 1. A mode abstraction of a soup-scooping task. x1 denotes spoon
orientation and x2 represents spoon distance from the soup. (a) Task: White
region (all spoon configurations without soup on it) ⇒ yellow region (spoon
in contact with soup) ⇒ pink region (spoon holding soup) ⇒ green region
(soup at target). The black curves denote two successful demonstrations.
(b) Learning a dynamical system (DS) policy [6] over unsegmented data
can result in successful task replay (blue trajectories), but lacks a guarantee
due to invalid transitions (red trajectories). (c) Trajectories segmented into
three colored regions (modes), with orange circles denoting attractors. (d-f)

Learning individual DS over segmented trajectories still results in invariance

failures, i.e., red trajectories traveling outside of modes.

sensor reading [8]. Additionally, we use a task automaton as

a receding horizon controller that replans when a perturbation

causes the system to travel outside a mode boundary. For

example, detecting a transition of yellow ⇒ white instead of

the desired yellow ⇒ pink will result in a new plan: white ⇒
yellow ⇒ pink ⇒ green.

In this work, we assume the task automaton is given in

the form of a Linear Temporal Logic formula. We denote

the challenge of learning a continuous policy that can realize

any discrete plan of valid mode transitions specified by the

automaton as temporal logic imitation (TLI). In contrast to

temporal logic planning (TLP) [9], where the workspace is

typically partitioned into connected convex cells with known

boundaries, TLI does not assume knowing mode boundaries.

Consequently, the learned policy might prematurely exit a

mode if the robot is perturbed to out-of-distribution states.

To guarantee any discrete plan is feasible during execution at

the continuous level, we show a learned policy with a global

stability property can be refined to satisfy the bisimulation

criteria [9] through human perturbations. By studying TLP

in the setting of LfD, we are able to address covariate shift

through learning motion policies that always obey discrete

plans without additional online data collection.

II. TEMPORAL LOGIC IMITATION FORMULATION

A. Robot Model and Sensor Model

We use a first-order dynamical system ẋ = f(x) to represent

the desired evolution of a robot end-effector, where x =

https://yanweiw.github.io/tli/


Fig. 2. Rollouts of multi-step scooping task under perturbations. The orange circle indicates the attractor for the current mode. We show the mode sequence
planned by the automaton at the top of each sub-figure with the blue bounding box indicating the current mode transition actually detected. The trajectory
in black is the rollout following the original policy, and the trajectory in red is driven by perturbations. The first row shows DS policies sequenced by an
automaton but without boundary, estimation can lead to looping. The second and third rows show modulation can prevent looping and eventually allow the
system to reach the goal mode despite repeated perturbations. Please check the video on the project page.

[x1, ..., xn]
T ∈ R

n describes an n-dimensional continuous

robot state. Let discrete sensor state α = [α1, ..., αm]T ∈
{0, 1}m be an m-dimensional sensor variable. We define a

system state as a tuple s = (x, α) ∈ R
n × {0, 1}m and its

corresponding mode σ ∈ Σ as σ = L(α). Overloading the

notation, we use σ to represents the set of all system states

in the same mode, i.e., σi = {s = (x, α) | L(α) = σi}.

In contrast, δi = {x|s = (x, α) ∈ σi} represent the

corresponding set of robot states.

B. Demonstrations and perturbations

Demonstrations are in the form {{xt,k, ẋt,k, αt,k}Tk

t=1
}Kk=1

,

where xt,k, ẋt,k, αt,k are robot state, velocity, and sensor state

at time t in demonstration k. Tk is the length of each k-th

trajectory. Given l number of unique sensor states, we can

segment the K demonstrations into l clusters of modes. We

learn a policy for each mode, which we stress test with either

(1) motion-level perturbations that displace the continuous

motion within the same mode, or (2) task-level perturbations

that drive the system outside of the current mode.

C. Problem Statement

Given (1) a task automaton φ specifying valid mode tran-

sitions to achieve a task, and (2) successful demonstrations

{{xt,k, ẋt,k, αt,k}Tk

t=1
}Kk=1

, we want to imitate a continuous

policy that can realize any discrete mode sequence planned

by the automaton despite arbitrary perturbations.

D. Bisimulation between Discrete Plan and Continuous Policy

To realize any discrete plan, every mode’s associated con-

tinuous policy must satisfy the bisimulation conditions: [9].

Condition 1 (Invariance). Every continuous motion starting

in a mode must remain within the same mode while following

the current mode’s policy; i.e., ∀i ∀t (s0 ∈ σi → st ∈ σi)

Condition 2 (Reachability). Every continuous motion start-

ing in a mode must reach the next mode in the demonstration

while following the current mode’s policy; i.e., ∀i ∃T (s0 ∈
σi → sT ∈ σj)

III. EXPERIMENTS

We now show empirically having a reactive discrete plan

is insufficient to guarantee task success without mode in-

variance for tasks with multiple modes. Consider the task

introduced in Fig. 1: scooping and transporting soup. For-

mally, we define four modes: (a) starting empty spoon, (b)
sensing the spoon is in contact with the soup, (c) sensing

the spoon has soup on it, and (d) sensing the spoon has

arrived at a target location. During successful demonstrations,

we observe the following discrete transitions a (reaching) ⇒
b (scooping) ⇒ c (transporting) ⇒ d (done) . Invariance

of mode b enforces contact during scooping and invariance

of mode c constrains the spoon orientation to avoid spilling.

One might assume having a task automaton is sufficient to

guarantee task success without modulation, as it only needs

to replan a finite number of times assuming a finite number

of perturbations; however, not enforcing mode invariance can

lead to looping at the discrete level, and ultimately renders

the goal unreachable, as depicted in the top row of Fig. 2. In

contrast, looping is prevented when modulation is enabled, as

the system experiences each invariance failure only once.

IV. CONCLUSION

In this paper, we introduce temporal logic imitation as

the problem of learning plan-satisficing motion policies. We

identify one challenge of applying LfD methods to multi-step

tasks as being that the learned controllers do not necessarily

satisfy the bisimulation criteria. To address this issue, we pro-

pose a DS-based approach that can iteratively estimate mode

boundaries to ensure invariance and reachability. Combining

the task-level reactivity of a task automaton and the motion-

level reactivity of DS, we arrive at an imitation learning system

that can robustly perform a multi-step scooping task under

arbitrary perturbations given only a few demonstrations.



REFERENCES

[1] H. Ravichandar, A. S. Polydoros, S. Chernova, and A. Bil-

lard, “Recent advances in robot learning from demon-

stration,” Annual Review of Control, Robotics, and Au-

tonomous Systems, vol. 3, pp. 297–330, 2020.

[2] A. Mandlekar, D. Xu, R. Martı́n-Martı́n, S. Savarese,

and L. Fei-Fei, “Learning to generalize across long-

horizon tasks from human demonstrations,” arXiv preprint

arXiv:2003.06085, 2020.

[3] O. Kroemer, C. Daniel, G. Neumann, H. Van Hoof, and

J. Peters, “Towards learning hierarchical skills for multi-

phase manipulation tasks,” in 2015 IEEE international

conference on robotics and automation (ICRA). IEEE,

2015, pp. 1503–1510.

[4] B. Akgun, M. Cakmak, J. W. Yoo, and A. L. Thomaz,

“Trajectories and keyframes for kinesthetic teaching: A

human-robot interaction perspective,” in Proceedings of

the seventh annual ACM/IEEE international conference

on Human-Robot Interaction, 2012, pp. 391–398.

[5] S. Niekum, S. Chitta, A. G. Barto, B. Marthi, and S. Osen-

toski, “Incremental semantically grounded learning from

demonstration.” in Robotics: Science and Systems, vol. 9.

Berlin, Germany, 2013, pp. 10–15 607.

[6] N. Figueroa and A. Billard, “A physically-consistent

bayesian non-parametric mixture model for dynamical

system learning.” in CoRL, 2018, pp. 927–946.

[7] S. Ross, G. Gordon, and D. Bagnell, “A reduction of imita-

tion learning and structured prediction to no-regret online

learning,” in Proceedings of the fourteenth international

conference on artificial intelligence and statistics. JMLR

Workshop and Conference Proceedings, 2011, pp. 627–

635.

[8] C. R. Garrett, R. Chitnis, R. Holladay, B. Kim, T. Silver,

L. P. Kaelbling, and T. Lozano-Pérez, “Integrated task and

motion planning,” Annual review of control, robotics, and

autonomous systems, vol. 4, pp. 265–293, 2021.

[9] H. Kress-Gazit, M. Lahijanian, and V. Raman, “Synthesis

for robots: Guarantees and feedback for robot behavior,”

Annual Review of Control, Robotics, and Autonomous

Systems, vol. 1, pp. 211–236, 2018.


	Introduction
	Temporal Logic Imitation Formulation
	Robot Model and Sensor Model
	Demonstrations and perturbations
	Problem Statement
	Bisimulation between Discrete Plan and Continuous Policy

	Experiments
	Conclusion

