
Accelerating Large-scale Temporal-Logic-based

Task and Motion Planning with Logic Network Flow

Xuan Lin, Jiming Ren, Samuel Coogan, and Ye Zhao

Abstract— We present “Logic Network Flow” (LNF), a novel
optimization framework that encodes temporal logic specifica-
tions as network flow constraints. Unlike traditional formu-
lations that recursively add constraints for logical operators,
LNF encodes temporal predicates as polyhedron constraints
on network flow edges, yielding provably tighter convex relax-
ations. When synthesized with Dynamic Network Flow (DNF)
for system dynamics, our approach demonstrates significant
computational advantages in multiple robot motion planning
case studies. Empirical results show that LNF achieves tighter
bounds while exploring fewer nodes during branch-and-bound,
delivering computational speedups of up to several orders of
magnitude over the traditional formulations.

I. INTRODUCTION

Task and motion planning (TAMP) with temporal logic

specifications has been widely accepted in the robotics

community for two reasons. First, it provides safety and

task completion guarantees for planning [1]–[5]. Second,

temporal logics offer a rich formal language for specifying

complex robotic tasks that goes beyond simple goal-reaching

objectives. Despite these advantages, solving such TAMP

problems remains challenging due to their NP-hard complex-

ity, often requiring minutes or hours to reach a solution. As

a result, current methods are often impractical for real-time

robotics applications.

In this abstract, we build upon the LNF formulation,

first introduced in [6], which encodes temporal logic spec-

ifications as network flow constraints to achieve tighter

convex relaxations, by introducing a network-flow-based

Fourier–Motzkin elimination method. This approach reduces

the number of variables in the original formulation while pre-

serving the tight relaxations critical for efficient optimization.

We evaluate our reduced formulation through extensive

simulations on large-scale problems that surpass the typical

complexity demonstrated in prior temporal logic planning

literature [7], [8], such as planning bipedal locomotion for

large-scale search and rescue. By achieving tighter convex

relaxations without introducing additional variables, our for-

mulation finds better incumbent solutions faster with com-

putational speedups of up to several orders of magnitude

compared to traditional formulations in [9], [10].

II. LOGIC NETWORK FLOW FORMULATION

A. Logic Network Flow

Several examples of LNFs converted from traditional

structure representing temporal logic specifications are

shown in Fig. 1. For each edge e ∈ E in the LNF, let

ye ∈ B indicate if the edge is traversed by the flow,

with a total of one unit of flow entering the network (i.e.,

Fig. 1: Examples of Logic Network Flows (LNFs) converted from traditional
“tree” structures. Each edge in the LNF possesses a binary variable yi and
a vector variable ωi.

∑

e∈Eout
vs

ye = 1). Let Π = {π1, . . . , π|Π|} be the set of

|Π| atomic predicates, we also associate a multi-dimensional

continuous flow variable ωe ∈ [0, 1]|Π| to each edge, with its

in-flow at vs being z
π . We define the convex set constraint

to represent the logical requirements, such that if the in-flow

passes through an edge e, we require ωe[i] = 1 for each non-

negated predicate πi ∈ Pe, where πi is the ith predicate in Π;

for negated predicates ¬πi ∈ Pe, we require ωe[i] = 0. For

predicate πi’s that do not appear in Pe, we do not constrain

ωe[i]. This requirement can be expressed as two convex set

constraints that need to be enforced simultaneously:

ωe ≥ yev
+
e , ωe ≤ 1|Π| − yev

−
e (1)

where v
+
e ∈ B

|Π| and v
−
e ∈ B

|Π| are artificially designed

column vectors to help encode the logical constraints. Specif-

ically, v+
e [i] = 1 if πi ∈ Pe and 0 if otherwise, and v

−
e [i] = 1

if ¬πi ∈ Pe and 0 if otherwise.

For each vertex v ∈ V with the input edges E in
v ⊂ E and

the output edges Eout
v ⊂ E , flow conservation constrains are

enforced for both ye and ωe:
∑

e∈Ein
v

ye =
∑

e∈Eout
v

ye,
∑

e∈Ein
v

ωe =
∑

e∈Eout
v

ωe (2)

In addition, flow conservation constraints are imposed on the

source vertex vs, where one unit of flow is injected:
∑

e∈Eout
vs

ye = 1,
∑

e∈Eout
vs

ωe = z
π (3)

B. Dynamic Network Flow

Dynamics systems are abstracted into DNF [11]. To build

a DNF, a set of discrete points S = {p1, . . . ,pm} is

selected to represent locations robots must visit based on

STL specifications. A DNF GD = (ED,VD) contains N×|S|
vertices where each vertex vtpi

corresponds to point pi at

timestep t. Edges connect vertices vtpi
to vt+K

pj
if traveling

Fig. 2: Multi-robot search and rescue scenario using bipedal locomotion. Left: Three bipedal robots collaboratively search for subjects among disaster sites
including crashed aircraft, burning houses, and forest fires. The robots follow planned paths (represented by blue, orange, and green paths) that satisfy
temporal logic constraints. Right: An amplified view of a bipedal robot executing the planned trajectory.

from pi to pj takes K timesteps, with additional edges

connecting consecutive timesteps at the same location. Each

edge e carries flow re ∈ [0, 1] with associated cost cere. Flow

conservation constraints are imposed at all vertices, with unit

flow injected at the source vertex:
∑

e∈Ein
v

re =
∑

e∈Eout
v

re, ∀v ∈ VD,
∑

e∈Eout
vs

re = 1 (4)

III. EXPERIMENTS

Our approach is evaluated in a virtual scenario where

multiple bipedal robots cooperatively execute a search and

rescue mission in a 100× 100 unit diaster area. The robots

must reach several critical locations (aircraft crash sites,

building fires, and forest fires) within strict time constraints

to rescue survivors and extinguish fires, as shown in Fig. 2.

The environment is converted into a DNF using a library of

precomputed trajectories based on linear inverted pendulum

dynamics [12]. Each trajectory in this library defines an edge

in the DNF with associated traversal time and energy cost.

Rough terrain and high-temperature fire zones introduce risk

factors, which are reflected in the edge costs. The robots must

decide whether to avoid high-risk areas or pass through them

to comply with timing constraints. Examples of increasing

difficulties are evaluated: (1) small-scale: 3 robots and 9 sites,

and (2) medium- and large-scale: 6 robots and 18 sites. The

specifications for small and medium problems require each

site to be visited at least once by any robot:

ϕsearch = ∧ns

j=1(♢[tj,1,tj,2](∨
nr

i=1(□[0,1]z
i,pj

t))) (5)

where nr is the number of robots and ns is the number

of sites. For the large-scale problem, we add sequential

dependencies between pairs of sites, expressed as:

ϕsequential =
∧

(i,j)∈P

(

(¬πi U πj) ∧ ♢[0,T](□[0,1]πi)
)

(6)

where P is the set of ordered pairs representing dependencies

(e.g., site i cannot be visited until site j is visited). We

TABLE I: Comparison of Logic Network Flow (LNF) and Logic Tree (LT)
formulations across different problem sizes. Times are in seconds.

Small size Medium size Large size

LNF LT LNF LT LNF LT

Relax. Gap (%) 4.9 56.1 5.7 65.8 2.9 59.7

Cont. vars 9656 7498 27443 16203 56772 45211

Bin. vars 359 359 624 624 1098 1098

Constraints 8125 5862 26604 8765 46622 25495

T-Find (2% gap) 1 3 9 608 27 91

T-Find (optimal) 2 10 93 967 1461 >4000

T-Prove (10% gap) 1 10 8 3500 16 288

T-Prove (optimal) 2 10 286 >60000 1916 >4000

choose ∆T = 8 sec and planning horizon N = 50, planning

400 seconds ahead. All experiments were conducted on a

computer with 12th Gen Intel Core i7-12800H CPU and

16GB memory, using Gurobi 12.0 as the MIP solver.

An example of the map with planned paths is shown in

Fig. 2. For all three problem sizes, the planning results are

shown in Table I. Major findings include the dramatically

tighter relaxation gap achieved by LNF (2.9-5.7%) compared

to the traditional formulations name Logic Tree (LT) [9],

[10] (56.1-65.8%), which directly affects computational effi-

ciency. While LNF encompasses more continuous variables

and constraints, it finds global optimal solutions 5-10 times

faster for small and medium problems, and significantly

outperforms LT for large problems where LT cannot prove

optimality within reasonable time limits. Furthermore, LNF

can quickly find good suboptimal solutions (within 10% of

optimal), showing speedups of up to 400 times for medium-

sized problems. This demonstrates that the LNF formulation

is more suitable for real-time applications than the baseline

formulation.

To verify the physical feasibility of our planned motions,

we simulate the search and rescue scenario in a MuJoCo

environment. The bipedal robots use controllers with A-LIP

model to execute the planned paths, as shown in Fig. 2. This

implementation showcases that the optimized trajectories are

executable on realistic bipedal systems navigating clustered

environment while maintaining balance and satisfying all

temporal specifications.

REFERENCES

[1] E. Plaku and S. Karaman, “Motion planning with temporal-logic
specifications: Progress and challenges,” AI communications, vol. 29,
no. 1, pp. 151–162, 2016.

[2] Z. Zhao, S. Chen, Y. Ding, Z. Zhou, S. Zhang, D. Xu, and Y. Zhao, “A
survey of optimization-based task and motion planning: From classical
to learning approaches,” IEEE/ASME Transactions on Mechatronics,
2024.

[3] S. Li, D. Park, Y. Sung, J. A. Shah, and N. Roy, “Reactive task and
motion planning under temporal logic specifications,” in 2021 IEEE

International Conference on Robotics and Automation (ICRA). IEEE,
2021, pp. 12 618–12 624.

[4] K. He, M. Lahijanian, L. E. Kavraki, and M. Y. Vardi, “Towards
manipulation planning with temporal logic specifications,” in 2015

IEEE international conference on robotics and automation (ICRA).
IEEE, 2015, pp. 346–352.

[5] A. Shamsah, Z. Gu, J. Warnke, S. Hutchinson, and Y. Zhao, “Integrated
task and motion planning for safe legged navigation in partially
observable environments,” IEEE Transactions on Robotics, 2023.

[6] X. Lin, J. Ren, S. Coogan, and Y. Zhao, “Optimization-based task and
motion planning under signal temporal logic specifications using logic
network flow,” arXiv preprint arXiv:2409.19168, 2024.

[7] V. Kurtz and H. Lin, “A more scalable mixed-integer encoding for
metric temporal logic,” IEEE Control Systems Letters, vol. 6, pp.
1718–1723, 2021.

[8] D. Sun, J. Chen, S. Mitra, and C. Fan, “Multi-agent motion plan-
ning from signal temporal logic specifications,” IEEE Robotics and

Automation Letters, vol. 7, no. 2, pp. 3451–3458, 2022.
[9] V. Raman, M. Maasoumy, and A. Donzé, “Model predictive control

from signal temporal logic specifications: A case study,” in Proceed-

ings of ACM SIGBED International Workshop on Design, Modeling,

and Evaluation of Cyber-Physical Systems, 2014, pp. 52–55.
[10] E. M. Wolff, U. Topcu, and R. M. Murray, “Optimization-based

trajectory generation with linear temporal logic specifications,” in
Proceedings of IEEE International Conference on Robotics and Au-

tomation. IEEE, 2014, pp. 5319–5325.
[11] J. Yu and S. M. LaValle, “Multi-agent path planning and network

flow,” in Algorithmic Foundations of Robotics X: Proceedings of

Workshop on the Algorithmic Foundations of Robotics. Springer,
2013, pp. 157–173.

[12] T. Koolen, T. De Boer, J. Rebula, A. Goswami, and J. Pratt,
“Capturability-based analysis and control of legged locomotion, part 1:
Theory and application to three simple gait models,” The international

journal of robotics research, vol. 31, no. 9, pp. 1094–1113, 2012.

