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Abstract—We introduce AdaTAMP, an Adaptive Task and
Motion Planning (TAMP) framework leveraging Large Language
Models (LLMs) for embodied agents in dynamic environments.
AdaTAMP integrates symbolic task planning with continuous
motion planning through a real-time self-feedback loop, enabling
efficient error correction and seamless multi-agent collaboration.
Evaluations conducted in the VirtualHome simulator demon-
strate that AdaTAMP significantly outperforms baseline methods
in success rate, planning efficiency, and adaptability, particularly
for complex, long-horizon, multi-agent scenarios.

I. INTRODUCTION

Successful execution of long-horizon tasks by embodied

agents demand reasoning over sequences of dependent ac-

tions, ensuring feasibility given environmental and physical

constraints [11], [12]. Task and Motion Planning (TAMP)

addresses this by hierarchically dividing the planning problem

into symbolic (high-level) planning and continuous motion

(low-level) planning. Classical approaches, such as those using

Planning Domain Definition Language (PDDL) [17], often re-

quire extensive manual domain specification, lack adaptability

to real-time changes, and struggle with complex, long-term

planning tasks.

Recent advancements in Large Language Models (LLMs),

like GPT-4, have shown promise in decomposing natural

language instructions into executable subtasks. While effective

at symbolic task planning, LLM-based approaches typically

face difficulties translating high-level instructions into pre-

cise motion commands and adapting to dynamic constraints.

Frameworks such as AutoTAMP [6] and CoELA [27] have

attempted to address these gaps; however, they often ne-

glect continuous motion integration and lack a robust real-

time feedback mechanism, making it difficult to generalize

to complex multi-agent coordination in dynamic, multi-room

environments.

To address these limitations, we present AdaTAMP, an

LLM-based adaptive TAMP framework that combines contin-

uous motion planning with a self-feedback loop for real-time

correction to enhance the integration of symbolic task planning

and motion execution for embodied agents in household envi-

ronments. Our contribution can be summarized as follows: (1)

We present AdaTAMP framework, which integrates symbolic

task sequences with continuous motion planning, addressing

both navigation and task execution for embodied agents in a

multi-agent setting; (2) We incorporate a self-feedback loop
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that allows for real-time corrections based on motion feed-

back to adapt to failures and dynamic environment changes;

(3) We perform a preliminary analysis of the framework’s

effectiveness in navigating and handling dynamic scenarios

in household environments, demonstrating its scalability and

practicality for multi-agent interactions across different met-

rics.

II. METHOD

Problem Description. We aim to convert natural-language in-

structions into executable motion plans for multiple embodied

agents, respecting spatial, temporal, and physical constraints.

The environment is represented as a graph of objects (with

positions, orientations, etc.), and we employ a closed-loop

self-feedback mechanism: whenever an action fails, the plan

is updated and the agent’s trajectory τ is adjusted based on

environmental feedback ft via

τt+1 = τt +∆(τt, ft),

to recover and continue toward the goal state.

Multi-Agent Task Planning with LLM. We employ GPT-

4 [3] to generate high-level task sequences (e.g., clean the

room) from natural language instructions. To enable the LLM

to understand the environment information symbolically, we

leverage grounding information from the simulated environ-

ment. This includes translating the graph representations of

nodes (i.e., objects) and edges (i.e., relationships between

objects) into natural language descriptions that encapsulate

object properties, locations, and spatial relationships (e.g., mug

is on the kitchen table).

Continuous Motion Planning. For each symbolic step, we

run A* [24], [28] on the simulator’s NavMesh to compute

collision-free, shortest-path trajectories. The planner continu-

ously rechecks and adjusts paths to avoid inter-agent conflicts

and dynamic obstacles, allowing concurrent execution.

Synthesizing Environment Feedback. When execution fails

(e.g., due to collisions or unreachable targets), we generate

semantically meaningful feedback at both agent and task

levels. This feedback refines individual motion plans without

restarting the entire task, maintaining team coordination and

progress.



Fig. 1. AdaTAMP framework for continuous task and motion planning. It
consists of three steps: high-level task planning with LLMs for multi-agents,
motion planning for low-level actions, and self-feedback loop for failure
correction.

III. EXPERIMENTS

Experiment Setup. We evaluate on 20 VirtualHome tasks (6

easy, 7 medium, 7 hard), from simple pick-and-place (e.g.,

“pick up an apple”) to long-horizon multi-step tasks (e.g.,

“get the water glass...put it on the coffee table”). Agents

run in single and multi agent modes (multiple agents only

on medium and hard tasks) with randomized start positions

and number of agents in object-rich regions. For each task,

GPT-4 is prompted (e.g., “set up the table”) to generate a

plan, which AdaTAMP executes using A* motion planning

plus closed-loop feedback. We compare against a one-shot

LLM plan baseline without feedback or dynamic replanning.

Evaluation Metrics. We measure: Final Success Rate (task

goal achieved), Subgoal Success Rate (fraction of intermediate

goals met), Completion Time (total duration), Action Count

Efficiency (actions vs. optimal), Levenshtein Distance [29]

(edit distance to ground-truth plan), and Coordination Score

(percentage of overlapping agent steps).

Results. In the single-agent scenario, AdaTAMP demonstrated

superior performance compared to the baseline across varying

task difficulties, as can be seen in Figure 2. This emphasizes

the critical role of our feedback loop and TAMP strategy for

better task and motion planning. AdaTAMP exhibited better

adaptability compared to baseline, as can be seen from its

lower Levenshtein Distance scores. These results underscored

the framework’s capability to execute sequential tasks with

greater precision and adaptability in dynamic environments

for single agent.

In the multi-agent scenario, AdaTAMP showed notable

performance improvements over the baseline. As no ground

truth exists for direct comparison, Levenshtein Distance could

not be evaluated in this context. Action count efficiency was

generally comparable between AdaTAMP and the baseline;

however, AdaTAMP outperformed the baseline specifically

in hard tasks and demonstrated better performance in multi-

agent settings. This improvement aligns with expectations, as

the integration of environmental feedback enables AdaTAMP

to select more optimal actions, a capability that becomes

particularly critical for handling the complexity of hard tasks.

AdaTAMP most often failed due to inadequate understand-

ing of the environment from the LLM. For example, given

a task ”pick up the cup,” the LLM may give a subtask to

pick up the water cup from a place where the cup doesn’t

exist. Another place of failure, albeit rare, is due to incorrect

sequence planning (e.g., taking out fridge item before opening

fridge) by the LLM.

When transitioning from single-agent to two-agent scenar-

ios, AdaTAMP maintained consistent performance for medium

tasks. However, the two-agent and multi-agent setting saw

a notable improvement in final success rates (85.7%) com-

pared to the single-agent scenario (42.8%) in hard tasks,

demonstrating its ability to effectively handle long-horizon

planning and inter-agent dependencies. Metrics of coordiation

and final success rate indicate that similar to humans, splitting

and executing tasks to solve a common goal becomes more

efficient for AdaTAMP with multiple agents.

Fig. 2. Results comparing baseline planning methods and AdaTAMP in
single-agent scenario.

Fig. 3. Results comparing baseline planning methods and AdaTAMP in two-
agent scenario.

Fig. 4. Results comparing baseline planning methods and AdaTAMP in multi-
agent scenario.

IV. CONCLUSION

We presented AdaTAMP, an LLM-based task and motion

planning framework enhanced with a self-feedback loop for

real-time correction. Our results show that AdaTAMP per-

forms well in dynamic environments and significantly im-

proves performance in multi-agent settings, especially for

complex, long-horizon tasks. We are working on validating

AdaTAMP on real-world robots for both robot-robot and

human-robot collaboration remains an exciting direction.
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