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Abstract—We envision a future where robots are equipped
“out of the box” with a library of general-purpose skills. To
effectively compose these skills into long-horizon plans, a robot
must understand each skill’s preconditions and effects in a form
that supports symbolic reasoning. Such representations should
be human-interpretable so that robots may understand human
commands and humans may understand robot capabilities.
Unfortunately, existing approaches to skill abstraction learning
often require extensive data collection or human intervention,
and typically yield uninterpretable representations. We present
SKILLWRAPPER, the first known active learning approach that
leverages foundation models to learn human-interpretable ab-
stractions of black-box robot skills, producing representations
that are both probabilistically complete and suitable for planning.
Given only RGB image observations before and after skill
execution, our system actively collects data, invents symbolic
predicates, and constructs PDDL-style operators to model the
skills. We present preliminary simulation results demonstrating
that the abstract representations learned by SKILLWRAPPER can
be used to solve previously unseen, long-horizon tasks.

I. INTRODUCTION

In the near future, robots will be deployed from the factory

to the real world, equipped with a set of general-purpose

skills to interact with their environment. However, these

skills could be black boxes that were learned, engineered,

or obtained in unknown ways. As a result, the conditions

under which skills can be used in real-world settings may be

unavailable or environment-dependent, potentially leading to

failure when sequencing skills to solve unseen tasks. Herein

lie two important problems: First, without understanding the

conditions under which each skill can be successfully executed

(i.e., preconditions) and the likely outcomes of execution (i.e.,

effects), a robot may fail to identify task plans that effectively

use its skills. Second, skill preconditions and effects should

be interpretable to everyday users, as they would allow users

to understand the robot’s decision-making process, making it

easier to specify goals or task constraints.

In this paper, we present SKILLWRAPPER, the first known

approach that uses foundation models to autonomously char-

acterize robot skills, emphasizing human-interpretable state

abstractions while guaranteeing probabilistic completeness and

suitability for planning. Our approach assumes a skill-type

signature as input and learns a PDDL-style [1] symbolic model

for each skill. Previous work has extensively explored learning

symbolic representations of high-level skills [2, 3, 4, 5].
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“There are three items Vase, TissueBox, and Bowl, and three
locations Sofa, CoffeeTable, and DiningTable. Their initial
positions are shown as follows. The robot is near the Sofa
initially, and everything is placed stably, and all items can fit
in every location. The goal is to have all items on the Sofa.”

Output Plan

GoTo3(Sofa,CoffeeTable),

PickUp5(Vase,CoffeeTable),

GoTo2(CoffeeTable, DiningTable),

DropAt2(Vase,Sofa),

GoTo4(Sofa,DiningTable),

PickUp1(Bowl,DiningTable),

GoTo2(DiningTable,Sofa),

DropAt2(Bowl,Sofa)

Fig. 1: An example multi-modal task specification using natural language and
egocentric visual observations, followed by the corresponding plan found by
planning using the PDDL-style operators learned by SKILLWRAPPER.

However, these works either assume access to privileged infor-

mation (e.g., object poses [4] or extensive human feedback [5])

or fail to produce human-interpretable representations [2].

Although prior work has explored extracting symbols and

language directly from demonstrations [6], existing approaches

require significant manual effort to define features and train

specialized classifiers for representation learning.

Hence, to facilitate learning skill abstractions from raw

robot observations while reducing effort from human experts,

we utilize foundation models, such as large language models

(LLMs) and vision-language models (VLMs). Several works

have exploited language models for robot decision-making and

planning [7, 8, 9, 10, 11]. In contrast to these approaches,

our method generates planning operators compatible by design

with task planners, thus benefiting from efficient domain-

independent heuristics [12] and correctness guarantees. This

paper briefly introduces SKILLWRAPPER while highlighting

key insights from our preliminary experiments in simulation.

II. METHOD

Briefly, SKILLWRAPPER (Figure 2) learns an abstract model

for planning with a library of black-box skills by (1) actively

proposing and (2) executing exploratory skill sequences to

collect execution traces, (3) inventing predicates by contrasting



Phase 2:
The robot attempts to execute each proposed sequence step-by-step and collects 

execution traces. Upon executing each task, successes or failures may occur.

Phase 4:
Using all candidate predicates, we factorize the symbolic state to construct

grounded skill operator definitions that characterize these skills.

Phase 3:
FM is presented images of positive (success) and negative (failure) cases from execution

traces to generate predicates for characterizing preconditions and effects. 

Phase 1:
A foundation model (FM) proposes robot skill sequences given black-box skill 

metadata and state description for learning operators.

Skill
SequencesFM

Black-box skill Prototypes:
- GoTo(loc_1, loc_2)
- PickUp(obj, loc)
- DropAt(obj, loc)
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4. ...

Task for Learning PickUp 

1. ...
2. Go to CoffeeTable.
3. Pick up Vase.
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Fig. 2: Overview of SKILLWRAPPER: in (1), given a description of the robot’s environment and metadata about its skills, a foundation model (FM) proposes
skill sequences useful for representation learning. In (2), the robot attempts to execute the proposed sequences, collecting the initial and final state of each
action as images stored in a database. In (3), this database is presented to the FM as contrastive pairs (i.e., success and failure images as positive and negative
examples) from which the FM will invent predicates to describe the symbolic state across all skills. Finally, in (4), the FM is used to infer the abstract states
corresponding to the states before and after each successful execution trace. The resulting abstract transitions are used to construct planning operators.

pairs of successful and failed skill executions, and (4) using

these predicates to generate PDDL-style operators compatible

by design with off-the-shelf classical AI planners.

Skill Sequence Proposal: Our system first queries a foun-

dation model to generate skill sequences intended to explore

the symbolic state space in a directed manner.

Predicate Invention: SKILLWRAPPER uses foundation

models to generate interpretable predicates, along with their

semantic meanings as English sentences. Predicate invention

aims to generate predicates that distinguish state features

responsible for successful or unsuccessful skill executions.

Operator Learning by Clustering: Using the collected

dataset of skill execution traces, SKILLWRAPPER evaluates the

truth value of each predicate at every traced state, inducing a

dataset of abstract state transitions. The operator learning algo-

rithm identifies the effects and preconditions of the potentially

multiple subgoal options corresponding to each skill [2].

Planning with Learned Operators: Having “wrapped” the

black-box skills in corresponding learned operators, SKILL-

WRAPPER can solve task planning problems conveniently

specified using natural language and images (Figure 1). To

convert the multi-modal task specification into an initial PDDL

state, the system queries a foundation model to classify

whether each predicate holds given the current state descrip-

tion, in a way similar to existing work [13].

III. EXPERIMENTS

We demonstrate the capabilities of the SKILLWRAPPER sys-

tem using preliminary simulation experiments in the Ma-

nipulaThor [14, 15] environment. We prompt GPT-4o [16]

with egocentric observations to evaluate the truth value of

each predicate. For predicate invention and skill sequence

proposal, we utilize o1-preview [17]. We provide the sim-

ulated robot with three high-level actions: PickUp(obj,

loc), DropAt(obj, loc), and GoTo(loc1, loc2). These

high-level actions function as black-box skills by executing a

deterministic sequence of low-level motions.

In total, we collected data from five skill sequences consist-

ing of 80 image-based states and 40 transitions, of which 24

skill executions were successful. Given the dataset of environ-

ment transitions and the abstract state space induced by the

invented predicates, SKILLWRAPPER learned ten operators to

model the three high-level skills. Once the system has learned

the human-interpretable predicates and operators, we use a

foundation model to formulate an unseen task planning prob-

lem. We present an example multi-modal task specification

using natural language and images at the top of Figure 1. Given

the learned abstract transition model and the task planning

problem inferred from the above task specification, the task

planner returned the plan shown at the bottom of Figure 1.

IV. CONCLUSION

This paper formulates the problem of actively learning

interpretable, abstract representations of black-box skills. We

propose SKILLWRAPPER as a solution that exploits the

multi-modal reasoning capabilities of foundation models. We

demonstrate our approach using a proof-of-concept example

in a simulated mobile manipulation setting. In ongoing and

future work, we plan to compare our approach to alternative

methods for active relational abstraction learning.
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