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Abstract— Automation in industries such as retail, warehous-
ing and logistics presents opportunities for greater throughput,
cost reduction and mitigation of disruptions from labour
shortages. Previously, such efforts have focused on back-room
operations involving packing and sorting in relatively structured
environments. With advances in robotic mobile manipulation
hardware and foundation models, automation can now be
applied to more variable and human-centric environments such
as retail store shelves. In this work, we present a task-planning
approach using Large Language Models (LLMs) and Vision-
Language Models (VLMs) to address the restocking problem in
retail scenarios such as supermarkets. We demonstrate this sys-
tem on a custom omnidirectional mobile manipulation platform,
with user-driven prompts and a feedback-based iterative re-
planning approach for error correction. The end-to-end system
is validated in a PyBullet simulation environment for pick-and-
place tasks.

I. INTRODUCTION

The modern retail industry is rapidly adopting robotics-

enabled solutions, driven by the competitive nature of the

sector and labour shortages, particularly in developed coun-

tries. Automating a retail store using mobile robots presents

significant challenges, as evidenced by international robotics

competitions such as the ”Amazon Picking Challenge” [1]

and ”Future Convenience Store Challenge” [2]. The robots

tasked with order picking, restocking, and organizing must

decompose high-level goals into sequenced sub-tasks and

generate efficient motion plans – all while navigating real-

world uncertainty [3].

Traditionally, this has been achieved using Task and Mo-

tion Planning (TAMP) [4], [5] frameworks, that rely on sym-

bolic reasoning that is manually integrated with continuous

motion control. However, these methods are often domain-

specific and rigid in their operation.

Recent work shows that Large Language Models (LLMs)

can transform TAMP by replacing rigid rule-based systems

with flexible, general-purpose reasoning [6], [7]. Pretrained

on vast internet-scale text corpora using masked language

modelling and autoregressive prediction objectives, LLMs

can infer structured task sequences without the need for

fine-tuning [8], adapt to environmental context, and even

recover from failures without domain-specific engineering or

retraining [9].

In this study, we explore this new paradigm using a

custom-built, omnidirectional, dual-arm mobile manipula-

tor [10], [11]. The system is tasked with ‘order picking’ in a

simulated retail environment, where it must retrieve items
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Fig. 1: Framework Architecture

from a given list in their respective quantities efficiently

based on store layout. Our framework combines an LLM

for high-level logical reasoning with a VLM for spatial

understanding, using execution feedback to continually refine

its plans. The proposed framework is tested in a PyBullet

simulation environment.

II. METHOD

The proposed framework is initialized by the user in-

putting the query in natural language (English) to the LLM.

Along with the query, a planogram containing the description

of the environment and robot-specific information consisting

of the feasible symbolic actions and their respective param-

eter sets (table I) are provided to the LLM.

The first stage of real-world task execution involves

creating a plan that outlines a sequence of actions. The

LLM is prompted to generate a task sequence from the

robot’s feasible actions to ensure that all the tasks are within

the scope of the robot’s capabilities while maintaining the

context of the environment through the planogram. Each

action takes specific parameters and performs the motion

planning necessary to complete the task. Table I explains

the robot’s feasible actions and their respective parameters.

The omnidirectional mobile base is equipped with an au-

tonomous navigation system including localization and path

planning algorithms. The navigate(table location)

is a wrapper that interfaces the parametrized symbolic func-

tions with a high-level motion planner that takes care of the

navigation of the mobile base. A call of navigate makes

the robot navigate to the desired target table location.

In the scan function, the robot uses its head-mounted

camera to capture an image and prompts VLM to find a

object type in the robot’s workspace. The VLM’s spatial

reasoning comes in handy to identify which object would be

ideal to grasp if multiple options are found and to determine

the appropriate gripper type (rigid gripper or soft gripper) as

well as the end-effector grasp approach depending on how

tightly packed the objects are.



Action / Parameters Description

navigate(table location) moves the robot base to the target table location

scan(object type) captures an image and uses VLM to scan the environment; determines the object of
object type to grasp, the gripper type and grasp orientation

pick(object) plans a trajectory, grasp the object and places it on the tray

place(object) grasps the object from the tray and places on the drop table

TABLE I: Robot Feasible Actions and Parameters

The pick and place functions interface with motion

planners for the two UR5e arms. Once the object, gripper,

and approach are selected, the planner solves inverse kine-

matics and computes a trajectory. In pick, the object is

retrieved from a shelf and placed on the robot’s tray; in

place, it’s picked from the tray and placed in an appropriate

slot identified using the VLM.

While the language models are excellent at generating task

plans, they’re not immune to mistakes. Our framework in-

cludes real-time checks to catch errors during execution and

gives immediate feedback to the LLM/VLM for on-the-fly

adjustments to the plan. This iterative process ensures smooth

operation without any interruptions or manual interventions.

Since LLMs are inherently stochastic, they might generate

invalid actions or incorrect parameters. While obvious er-

rors—like syntax mistakes or out-of-bound values—are easy

to catch due to the robot’s limited and fixed capabilities,

logical inconsistencies are trickier. For example, if the plan

tells the robot to navigate to a table that doesn’t match the

target object, the syntax and parameters may seem correct,

but the logic is flawed. Here we utilize the VLM to cross-

check the objects in view against the plan and flag the

error, triggering feedback to revise the plan. Similarly, we

also use this feedback loop to identify and correct miss-

ing navigation steps before pick or place actions.

Throughout, a buffer maintaining the current execution state

is maintained and included in the prompt during plan revision

provided to the LLM to refine the plan on the fly, without

starting from scratch.

III. SIMULATION & EXPERIMENTS

A. Simulation Setup

Retail store environments commonly have flat, smooth

floors and narrow aisles so we use a robotic system con-

sisting of two 6-DOF UR5e manipulators mounted on an

in-house-built omnidirectional mobile base, allowing motion

in all directions and in-place rotation, making it suitable for

tight retail spaces. Arms are equipped with two different

types of grippers, a standard 2-finger gripper for grasping

rigid objects and a reconfigurable 3-finger soft gripper to

manipulate deformable objects [12].

For planning, we use Mixtral AI’s Mixtral 8x22b [13]

LLM model (141B parameters, 64k context window) and

Pixtral 12b [14] VLM (400M vision encoder, 12B pa-

rameters multi-modal decoder and 128k context window).

Both of these models are chosen for their scale, performance,

and permissive open-source license.

We consider an order-picking task in a simulated retail

setting using PyBullet [15]. A mobile manipulator navigates

the environment to pick and deliver items in specified

quantities. The setup includes 8 object types placed on 4

tables arranged in a 2x2 grid with space for robot movement.

The objects have three different shapes - cuboid, cylin-

drical and spherical. Cuboid objects represent solid, non-

deformable items that can be grasped using a standard 2-

finger rigid gripper. In contrast, cylindrical and spherical

objects represent irregularly shaped or deformable objects

that require a 3-finger soft gripper. The user query consists

of any combination of these items with any count (up to 15).

B. Evaluation

To evaluate our approach, we designed a series of experi-

ments that progressively test reliability, reasoning, and ability

to recover from failure.

We begin with simple, feasible order-picking tasks with

shuffled item types and quantities to confirm that the sys-

tem generates correct and consistent plans. Next, we test

the LLM’s robustness by providing infeasible or irrelevant

queries such as ”play music” or ”explore space” which

fall well outside the robot’s action space. This helps assess

whether the model can correctly reject or ignore nonsensical

instructions. We also craft intentionally misleading prompts

to test fine-grained understanding. For instance, if the envi-

ronment contains red cubes and white spheres, we include

queries for items that don’t exist such as red spheres or white

cubes. These tests examine whether the LLM-VLM system

can accurately ground object descriptions in the observed

environment. To evaluate re-planning capability, we inject

errors into valid plans. For example, incorrect actions, object

mismatches, wrong action sequences, or invalid parameters.

The system begins execution with these flawed plans and

is expected to detect the resulting failure and self-correct

through feedback-driven refinement iterations.

The results of these experiments demonstrate that our

method enabled the robot to successfully understand the user

query and perform generated tasks despite the uncertainties

and challenges in the environment. The successful execution

of these experiments validates the practicality and robustness

of our approach, showcasing its potential for various real-

world applications such as order picking, restocking, and

organizing in the retail setup.

IV. CONCLUSIONS

We present a task-planning framework that combines a

pre-trained LLM & VLM to generate and refine action plans

without prior domain knowledge. The LLM proposes action

sequences and parameters, while feedback from execution

failures enables iterative re-planning. Simulated experiments

show that, despite requiring multiple refinements, the system

effectively handles order-packing tasks and demonstrates

strong potential for retail restocking applications.
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