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Abstract—This abstract presents a real-time approach to
human motion prediction and its integration into proactive
dynamic human-aware motion planning for safe human-robot
collaboration. We utilize a deep learning graph-based model to
forecast future human movements. These predictions are then
incorporated into a planning framework that employs a static
roadmap and a time-variant A* algorithm to adapt the trajectory
of a UR5e manipulator. This integration enhances human-robot
interaction by combining accurate motion predictions with adap-
tive trajectory planning, enabling proactive collision avoidance.

I. INTRODUCTION

Predicting human motion in real-time and proactively plan-
ning robot tasks is essential for safe human-robot collabora-
tion. Traditional methods, such as Gaussian Mixture Models
(GMMs) [1], function well in structured and repetitive sce-
narios but struggle with the unpredictability of human behav-
ior. While conventional motion planning techniques prioritize
safety, they often lack the adaptability needed for dynamic in-
teractions. In contrast, deep learning (DL) methods for motion
prediction, which utilize Recurrent Neural Networks (RNNs),
Graph Convolutional Networks (GCNs), and Transformers,
enhance the accuracy of predictions related to human tasks
[2], [3]. However, their application in real-time settings is
challenging due to high computational demands.

Traditional motion planning methods ensure safety but
lack adaptability for dynamic interaction. Instead, proactive
approaches, such as the Temporal Probabilistic Roadmap [4],
improve collaboration by anticipating human actions. Our
work seeks to incorporate these predictions into a human-
aware planning framework to enhance safety and responsive-
ness. We employ a deep learning-based method to forecast
human motion in real-time, and generate optimal and collision-
free plans for the robot.

The contributions are the following:

1) a lightweight method for human motion prediction infer-
ence to be used in safety-critical contexts;

2) a real-time proactive planning method that utilizes pre-
dicted human motion in conjunction with a time-variant
A* algorithm;

3) a parallelized version of the A* algorithm, optimized for
real-time pathfinding in complex environments.
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II. METHODOLOGY

A. Human Motion Prediction

To predict human motion, we utilize a graph-based model
known as Graph-Mixer [2]. This model begins with an ini-
tial pose embedding module that converts input pose se-
quences into higher-dimensional features through adaptive
spatial graph convolution. Following this, the spatial-temporal
graph mixer combines both adaptive spatial and temporal
graph convolutional networks to effectively capture human
skeleton dynamics and the temporal relationships across dif-
ferent frames. Finally, the prediction head generates future
motion predictions based on these spatial-temporal features,
enhancing accuracy in long-term human motion forecasting.
We trained this model for 20 epochs on the HA4M dataset
[5]. After conducting a dedicated ablation study, we decided
to use 12 frames of historical motion to predict 60 frames,
equivalent to 2 seconds, of future motion.

B. Human-Aware Motion Planning

Another objective of this work is to incorporate real-time
human predictions into the robot’s planning process. In this
way, we ensure that the robot can navigate without collisions
while maintaining an acceptable level of performance. To
address this challenge, we built our method upon the T-
PRM framework proposed by Huppi et al. [4]. T-PRM was
developed for planar holonomic robots with both static and
moving obstacles. The roadmap graph was constructed using
uniformly generated samples, which were deemed valid only
if they did not collide with any static obstacles. Each edge
in the graph was assigned a cost equal to its length, along
with an estimated total time for traversal, calculated based on
the assumption of a holonomic robot moving at a constant
velocity. During the querying phase, the A* algorithm was
utilized to identify the shortest paths in the graph. If any
node of an edge was occupied by a dynamic obstacle during
a specific time interval, that edge was assigned an infinite
cost for that time interval. Our method expands upon T-PRM
by incorporating human future motion as dynamic obstacles,
enabling the generation of optimal collision-free trajectories
for a manipulator. We create a uniformly spaced roadmap
within the robot’s Cartesian workspace, where each sample
corresponds to a potential end-effector position. We then
utilize the closed-form Inverse Kinematics (IK) of the manip-
ulator to determine all possible joint configurations for each
sample. These configurations are used to calculate travel times
for each edge and to check for collisions with humans during
specific time intervals. Furthermore, we introduce a human-
robot distance condition in the collision-checking process to
ensure that the robot generates trajectories that meet the safety



requirements outlined in ISO/TS 15066:2016 for collaborative
robots. To enable real-time computation of the final plan,
we implemented multithreading to parallelize the execution
of the A* algorithm. Once the optimal plan is identified,
we continuously monitor the current and future positions of
the human to dynamically adjust the robot’s speed during
its motion based on the distance between the robot and the
human. If a potential collision is detected, we re-plan the
robot’s trajectory. If the predicted collision is expected to
happen far in the future, the replanning can occur while the
robot is still moving. However, if a collision is imminent, the
robot will be stopped to prevent any accident as in ISO/TS
15066:2016. This replanning mechanism enables the robot to
continuously adapt its motion according to predicted human
movements, ensuring safe and smooth collaboration.

III. RESULTS AND DISCUSSION

A. Human Motion Prediction Evaluation
We evaluated this method using the common Mean Per Joint
Position Error (MPJPE), a standard metric in 3D human
pose prediction. This metric calculates the average Euclidean
distance between the predicted and actual joint positions in
3D space. The MPJPE is calculated by computing the error
for each joint, averaging across all joints, and then averaging
across all frames in a sequence. Formally:

MPJPE =
1

N

N∑
i=1

∥Ĵi − Ji∥ (1)

where N is the number of joints, Ĵi is the predicted 3D
position of the i-th joint, Ji is the ground truth 3D position
of the i-th joint, and ∥·∥ denotes the Euclidean distance
between the predicted and ground truth joint positions. For the
Graph-Mixer method, considering 2 s of prediction horizon,
the MPJPE is 111.27±101.89 mm, sufficient to understand the
future occupancy area of the human operator (see Figure 1).

B. Human-Aware Motion Planning Evaluation
We conducted preliminary tests of our proposed framework
using a Universal Robots UR5e robot to perform pick-and-
place tasks while a human completed an assembly task (see
Figure 2). A ZED2 RGB-D camera was employed to detect
the current position of the human skeleton, and we utilized the
Graph-Mixer network to predict the human’s motion for the

Fig. 1: Comparison of predictions (magenta lines) and ground
truths (red lines) of the human’s joint trajectories.

Fig. 2: Test environment with the Universal Robots UR5e
robot and the ZED2 camera.

next two seconds at a frequency of 30Hz. We compared our
framework to a reactive planning approach that only considers
the current position of the human in relation to the robot.
Our results (see Table I) show that our proposed framework
successfully completed nearly 30% more pick-and-place tasks
than the reactive approach. Furthermore, the reactive method
required the robot to stop its motion to avoid collisions nine
times more often than our framework. When it came to re-
planning while the robot was moving, our approach re-planned
nearly five times more frequently than the reactive method.

The preliminary results suggest that incorporating human
motion prediction into robot planning allows the manipulator
to generate collision-free trajectories that are more resilient
to human intrusion in the robot’s workspace. These improved
trajectories can enhance both safety and efficiency in collab-
orative industrial tasks.

TABLE I: Comparison of proactive and reactive planning .

Method Mean Planning
Time (s) Stop & Re-planning Re-planning

During Motion
Proactive 0.25 0.11 2.39
Reactive 0.19 0.93 0.5
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