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Abstract— We propose a new framework, VISO-Grasp, that
handles grasping in environments with extreme occlusion by
integrating vision-language understanding. Our approach har-
nesses the spatial reasoning capabilities of large Foundation
Models (FMs) to actively guide viewpoint selection and build
a dynamic, instance-focused map of object relationships. This
evolving representation improves grasp reliability under limited
visibility and enables informed Next-Best-View (NBV) planning
and sequential grasp execution when direct access is obstructed.
To further enhance robustness, we propose a multi-view fusion
strategy driven by uncertainty, which adaptively refines grasp
confidence and directional estimates in real-time. The Video is
under: https://www.youtube.com/watch?v=HsJCMzc-Zas

I. INTRODUCTION

Robotic grasping in unstructured, cluttered environments

remains a significant challenge, particularly for execut-

ing target-oriented grasps under partial or complete occlu-

sions [1]. Humans instinctively overcome occlusion during

targeted searches by adjusting their viewpoints and intuitive

reasoning about spatial relationships to infer potential target

locations. As inspired by this, we propose VISO-Grasp,

a Vision-language Informed Spatial Object-centric grasping

framework that integrates off-the-shelf Foundation Models

(FMs) [2]–[4] with active vision and occlusion-aware SE(3)
grasp planning, which leverages the inherent prior of VLMs

to achieve human-like decision-making. VISO-Grasp intro-

duces evolving spatial reasoning that continuously integrates

spatial and occlusion relationships. By incorporating an

online grasp fusion mechanism, our approach dynamically

refines target visibility and substantially improves grasp

efficiency in heavy occlusions.

II. METHODOLOGY

We consider a robotic manipulation system operating in an

unknown, cluttered environment containing a set of objects.

Among these, a distinct target object is subject to significant

occlusions, causing partial or complete invisibility.

A. System Overview

Fig. 2 illustrates the fundamental components of

VISO-Grasp, which comprises: i) Adaptive Multi-view

Open-Vocabulary 3D Object Detector (AMOV3D); ii)

Target-guided View Planner (TGV-Planner); iii) Real-Time

Uncertainty-guided Multi-view Grasp Fusion (RT-UMGF).
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Fig. 1: VISO-Grasp, a unified system integrating Foundation

Models (FMs) into target-aware active view planning and

uncertainty-driven real-time 6-DoF grasp fusion.

B. Adaptive Multi-View Open-Vocabulary 3D Object Detec-

tion (AMOV3D)

In general, the AMOV3D module leverages FMs to

achieve robust 3D object detection and segmentation in

cluttered environments. Given an input image and a prompt-

specified target object, a VLM generates structured descrip-

tions for each detected object, prioritizing the identification

of the target to mitigate the risk of occlusion-induced omis-

sion. Each object instance is described using its label and

three attributes, which serve as a text prompt for open-

vocabulary object detection [3], [4]. A historical object list,

which stores all objects currently perceived within the scene,

is maintained and updated at each new viewpoint to refine

detected object attributes and resolve occlusions. This list

persists throughout the planning process, dynamically evolv-

ing as new observations improve object descriptions and

scene understanding. Each viewpoint captured in the history

provides additional observations of the scene. During Next-

Best-View (NBV) planning, AMOV3D updates the detected

object set O′ by integrating new observations and verifying

consistency with prior data. By continuously refining O′

and selecting viewpoints that maximize the visibility of the

target object, AMOV3D improves the accuracy of object

detection and occlusion reasoning, thereby enhancing the

spatial reasoning accuracy of the TGV-Planner.

If the target object is not detected in the current view,

the system initiates an occlusion reasoning process to infer

potential obstructing objects. We employ in-context learning

within the VLM to analyze the scene’s spatial configuration

and identify potential occluders based on structured object

descriptions and the current view image. To ensure accurate

inference without additional computational cost, we enforce



Fig. 2: Overview of VISO-Grasp (left) and principle for TGV-Planner (right).

a Mixture-of-Reasoning-Experts (MoRE) [5] paradigm, guid-

ing the VLM to concurrently assess spatial relations, material

properties, and geometric constraints via structured prompt-

ing. The outputs are aggregated using voting to enhance

occlusion identification robustness.

C. Target-Guided View Planner (TGV-Planner)

The TGV-Planner performs spatial reasoning to determine

whether the target object can be directly grasped or if an

occluder must be removed first. If occlusions prevent direct

grasping, the system prioritizes occluder removal. However,

when direct removal is infeasible or does not sufficiently

expose the target, the Velocity-field-based NBV (V-NBV)

module optimizes the view planning. V-NBV is applied to

either enhance the visibility of for grasp execution or to

improve occluder removal efficiency by selecting a more

informative camera perspective. The general principle to

construct V-NBV is illustrated in Fig. 2 (right), and relevant

details are explained in [6].

D. Real-Time Uncertainty-guided Multi-view Grasp Fusion

(RT-UMGF)

In general, RT-UMGF continuously refines grasp predic-

tions by fusing multi-view observations. It applies Bayesian

updates using a von Mises-Fisher (vMF) distribution, en-

suring stable grasp selection in cluttered environments. We

employ the vMF-Contact [7], which is adapted to real-time

(10Hz) inference through pose-centric uncertainty modeling

and buffered online Bayesian fusion. In runtime, assume

that the raw point cloud is captured in the time frame t,

a set of contact grasps [8] is inferred as Gt = {gt
n =

(c, µc, κc,∆c, wc, qc)
t
n | n ∈ N} that parameterizes: 1) The

queried contact points c ∈ R3; 2) Baseline vector distri-

butions: p(b|c) = vMF(b|µc, κc) = Z(κc) exp(κcµc

¦b),
with µc the mean direction of the baseline and κc as

the directional precision. Z(κc) is the normalization factor;

3) The quantized approach vector, represented by ∆c =
{δk

c
}k=0,...,K represents discrete categorical bin scores that

define a direction constrained to lie on a plane perpendicular

to a given baseline. 4) The grasp width wc and 5) The contact

quality score qc.

The grasp fusion process is designed as follows: For

contact point positions ctj , we adopt the same regime

as [9] utilizing weighted sum by grasp quality q: cti =
q
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with grouped element indices j ∈ J . For

baselines and approach vectors, the conjugate prior of vMF

baseline distribution is initialized as: µc ∼ vMF(µ0
c
, κ0

c
) for

t = 0. For the Bayesian inference in time frame t, we may

update the posterior distribution following the rule of the

exponential family [10] by:
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The approach categories are updated by δt,i
c

= δt−1,i
c

+∑
j δ

t,i
cj
. Here κt

c
represents the precision on the observed

mean likelihood µc. We refer interesting readers for the

theoretical background to [6], [7].

III. CONCLUSION

We develop VISO-Grasp, a novel vision-language-

informed system for target-oriented grasping in highly un-

structured environments including entire invisibility. By in-

tegrating a Vision-Language Model (VLM) with object-

centric View planning and real-time uncertainty-driven grasp

fusion, our system enhances scene understanding and im-

proves grasp success through continuous velocity fields and

semantic spatial reasoning for adaptive grasping in occluded

environments with complete invisibility. VISO-Grasp lever-

ages robust multi-view aggregation to refine grasp selection

by integrating uncertain grasp hypotheses, ensuring superior

stability and accuracy. More details to our experiments are

documented under [6].
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