
TWOSTEP: Multi-agent Task Planning using Classical Planners and

Large Language Models

David Bai∗1, Ishika Singh∗1, David Traum1, Jesse Thomason1

Abstract— Classical PDDL planning guarantees valid action
sequences but struggles with concurrency unless domains are
heavily modified by human experts. Large language models
(LLMs) for planning excel at commonsense subgoal decompo-
sition, yet lack execution guarantees. We combine the strengths
of these systems by using LLMs to approximate multi-agent
decompositions for single-agent PDDL planners, reducing both
planning time and execution steps compared to direct multi-
agent PDDL and single-agent baselines. Empirically, LLM-
inferred subgoals match human expert decompositions while
preserving plan correctness. Website and resources at glamor-
usc.github.io/twostep

I. INTRODUCTION

Multi-agent PDDL planning requires domain modification

by a human expert and faces exponential search complexity.

We investigate whether LLMs can exploit the semantic

information in single agent expert-written planning domains

to propose agent-specific subgoals for achieving global ob-

jectives. Our experiments span both symbolic and embodied

domains.

Classical planning. Classical planning algorithms operate

on finite, deterministic, fully observable states, guaranteeing

a plan if one exists. Planning Domain Description Language

(PDDL) and Answer Set Programming (ASP) are popular

specification formats for such tasks [1], [2], [3], [4].

Planning with LLMs. Several works employ LLMs for

agent planning [5], [6], but correctness is not guaranteed

due to LLM stochasticity. Others combine LLMs with pro-

grammatic plan generation [7], [8], [9] or domain-specific

heuristics [10], [11], though success is not assured. Recent

efforts explore multi-agent code generation [12] or dialogue-

based coordination [13]. In contrast, we use LLMs to infer

commonsense goal decompositions, letting a PDDL solver

ensure plan correctness.

II. MULTI-AGENT PLANNING METHOD: TWOSTEP

We convert an N-agent problem into N single-agent sub-

problems via LLM-based subgoal decomposition. Specifi-

cally, we consider N − 1 helper agents and one main

agent. For a problem P with initial state i and goal g,

each helper agent h generates a subgoal gh and a plan

πh =∏(i,gh), updating the state ih+1 after execution. Finally,

the main agent plans from iN−1 to achieve the original

goal g. We implement subgoal generation in two steps:

English subgoal creation (subgoal generator) and translation

to PDDL form (subgoal translator). Our approach, TWOSTEP

*Equal Contribution
1Computer Science Department, University of Southern California

{dmbai, ishikasi, traum, jessetho}@usc.edu

Fig. 1: Results comparing vanilla planning from SA PDDL (N = 1) and
MA PDDL (N ≥ 1) to TWOSTEP as an average of normalized
results across 5 symbolic domains (lower is better for both
metrics). The shaded background is the standard deviation across 3
runs for TWOSTEP. All averages are across 20 tasks, except MA
PDDL in the TERMES domain, which failed to produce plans for
5/20 tasks with 4 agents.

(Figure 2), hypothesizes that LLMs can infer partially inde-

pendent subgoals, enabling parallel action while preserving

plan feasibility.

a) Subgoal Generation (subgoal generator and subgoal

translator): We provide an in-context example problem and

plan, plus two sample subgoals demonstrating independent

progress and resource release. For a new problem Pd , the

LLM iteratively proposes subgoals for N−1 helper agents

or outputs ‘None’ if no additional helpers are needed. Sub-

goals are then translated by prompting the LLM with the

domain description, initial state, and an example mapping.

b) Editing the Initial State for the main Agent.: We

update the environment state after each helper agent’s

actions, ensuring the next agent (or main agent) sees a

consistent state. Agent-specific conditions remain unaltered,

allowing each agent to begin from its own valid initial

configuration.

c) Multi-agent Plan Execution.: All agent plans are

then executed in a shared environment. Symbolic domains

use a dynamic programming exceution approach that is

optimal for 2 agents and approximates optimal execution for

≥ 3, while embodied experiments are executed in AI2THOR

simulator [14].

III. RESULTS

We evaluate TWOSTEP against single-agent (SA PDDL)

and multi-agent (MA PDDL) PDDL planning across 5 sym-

bolic domains, and four long-horizon tasks in an embodied

domain. We present our overall symbolic domain results in

https://glamor-usc.github.io/twostep
https://glamor-usc.github.io/twostep

LLM

Subgoal Generator Prompt:

< System prompt instruction >

< Example of language subgoal

description generation in an example

domain >

Current domain:
< Example of PDDL SA plan in current

domain >

New problem in current domain:
You have a potato, a pot, a knife,

table, microwave, stovetop, sink,

faucet. Potato is not boiled, not

sliced, pot is empty, on stove, stove is

turned off, sink is empty, faucet is

turned off, ...

Your goal is to boil potato slices.

Provide 2 possible helper subgoals:

English Subgoal 1:
Turn the faucet on, while main

agent slices the potato. Release

all objects at the end.

Subgoal Translator Prompt:

< System prompt instruction >

Example translation from language subgoal to PDDL
goal using the current problem:
(define (problem BoilPotatoProblem)

 (:domain PotatoCookingDomain)

 (:objects

 potato1 knife1 sink1 ...)

 (:init (empty pot1)

 (not (on stove1))

 (not (boiled potato1))

 (not (sliced potato1))

 (on pot1 stove1) ...)

Your goal: boil potato slices.

PDDL goal: (:goal (and

 (sliced potato1)

 (boiled potato1)))

Your goal: Boil water using the pot,

while main agent …

PDDL goal:

LLM

PDDL Subgoal:
(:goal (and

 (filled pot1 water1)

 (on pot1 stove1)

 (isHot water1)

 (empty hands)))

SA Domain

PDDL Planner

Subgoal Plan

SA Problem

Update
problem with

this PDDL
goal

SA Domain

PDDL Planner

Main Plan

SA Problem

Update problem with
environment-specific initial
state conditions changed

from the helper plan

Subgoal plan 1

Main Plan

Plan Execution

Multiagent Plan
Execution Length

SA Problem

Plan Execution

English Subgoal N:
Fill the pot and boil water,

while main agent slices the

potato. Release all objects at

the end.

Pass this SA Problem to the
next helper agent.

Otherwise, pass it to the
main agent.

…

Subgoal plan N

…

For each subgoal:

LLM

For each subgoal:

Fig. 2: TWOSTEP pipeline. N − 1 helper agents each complete a partially independent subgoal to reduce steps for the

main agent. All resulting plans run with partial parallelization to shorten overall execution length.

this abstract. For detalied results on symbolic and embodied

domains, please refer to full paper [15].

Approaches. SA PDDL: Single-agent vanilla PDDL plan-

ning with agent-specific actions. MA PDDL: Multi-agent

PDDL planning (2–4 agents), with expert modified single

agent domains. TWOSTEP: A multi-agent pipeline with

LLM-based subgoal decomposition among helper and

main agents (Figure 2), executed as single-agent PDDL

subplans in parallel. TWOSTEP requires no domain file

modifications.

Evaluation Metrics. We measure planning time (seconds)

and execution length (environment steps). All methods suc-

ceed in reaching the goal, so we omit success rates. For

TWOSTEP, planning time includes (1) the solver time for

each helper and main agent and (2) LLM inference.

Execution length factors in parallel execution. For sym-

bolic domains, we estimate parallel plan length using a

dynamic programming check for agent conflicts (optimal for

2 agents, heuristic for more). For embodied domains, we

count environment steps, where agents act in parallel but

may coordinate subgoals by waiting for other agents.

Overall Results. We show results for SA PDDL, MA

PDDL, and TWOSTEP across five domains with 20 problems

each, for 1–4 agents, in Figure 1. We observe that TWOSTEP

consistently lowers planning time compared to MA PDDL

for most domains and typically yields shorter execution

lengths in 3/5 domains. In highly sequential tasks like

BLOCKSWORLD, MA PDDL sometimes finds shorter plans

by exhaustively searching the larger state space. In domains

lacking strong agent-specific states (e.g., TYREWORLD),

MA PDDL gains no concurrency advantage. By contrast,

TWOSTEP exploits LLM-driven subgoal decomposition and

can reduce planning times by up to 64.7% (for 4 agents) and

execution lengths by up to 13.2%, compared to SA PDDL.

Moreover, it works with unmodified single-agent domains,

benefiting from the LLM’s partitioning of subgoals.

In complex domains like TERMES multiple agents in-

crease the search space for MA PDDL, while TWOSTEP

divides the task into parallelizable subplans.

We demonstrate that this method generalizes to the em-

bodied domain with improved performance over MA PDDL

and through human studies find that LLM subgoals approach

performance of human expert generated subgoals.

Overall, these results show that TWOSTEP leverages paral-

lelization with minimal domain engineering and scales more

efficiently than naive multi-agent PDDL for larger N.

IV. CONCLUSION

We propose TWOSTEP, a method to decompose a single

agent planning problem into a multi-agent planning problem

in several symbolic domains and one embodied domain.

TWOSTEP leverages commonsense from LLMs to effec-

tively divide a problem between any N agents for faster

execution, while also preserving execution success using

classical planning guarantees. Our results show that LLM-

based goal decomposition leads to faster planning time and

shorter plan execution steps than the multi-agent PDDL

problem on average. We additionally show that LLM-inferred

subgoals in TWOSTEP approximate those specified by a

human expert [15].

ACKNOWLEDGEMENTS

This work was supported by a grant from the Army

Research Lab (ARL) Army AI Innovations Institute (A2I2),

award number W911NF-23-2-0010.

REFERENCES

[1] Y.-q. Jiang, S.-q. Zhang, P. Khandelwal, and P. Stone, “Task planning
in robotics: an empirical comparison of pddl- and asp-based sys-
tems,” Frontiers of Information Technology & Electronic Engineering,
vol. 20, pp. 363–373, 03 2019.

[2] M. Fox and D. Long, “Pddl2.1: An extension to pddl for expressing
temporal planning domains,” ArXiv, vol. abs/1106.4561, 2003.
[Online]. Available: https://api.semanticscholar.org/CorpusID:1397894

[3] G. Brewka, T. Eiter, and M. Truszczyński, “Answer set programming
at a glance,” Commun. ACM, vol. 54, no. 12, p. 92–103, dec 2011.
[Online]. Available: https://doi.org/10.1145/2043174.2043195

[4] V. Lifschitz, “Answer set programming and plan generation,”
Artificial Intelligence, vol. 138, no. 1, pp. 39–54, 2002, knowledge
Representation and Logic Programming. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S0004370202001868

[5] W. Huang, P. Abbeel, D. Pathak, and I. Mordatch, “Language models
as zero-shot planners: Extracting actionable knowledge for embodied
agents,” in Proceedings of the 39th International Conference on

Machine Learning, ser. Proceedings of Machine Learning Research,
K. Chaudhuri, S. Jegelka, L. Song, C. Szepesvari, G. Niu, and
S. Sabato, Eds., vol. 162. PMLR, 17–23 Jul 2022, pp. 9118–9147.
[Online]. Available: https://proceedings.mlr.press/v162/huang22a.html

[6] B. Ichter, A. Brohan, Y. Chebotar, C. Finn, K. Hausman, A. Herzog,
D. Ho, J. Ibarz, A. Irpan, E. Jang, R. Julian, D. Kalashnikov, S. Levine,
Y. Lu, C. Parada, K. Rao, P. Sermanet, A. T. Toshev, V. Vanhoucke,
F. Xia, T. Xiao, P. Xu, M. Yan, N. Brown, M. Ahn, O. Cortes,
N. Sievers, C. Tan, S. Xu, D. Reyes, J. Rettinghouse, J. Quiambao,
P. Pastor, L. Luu, K.-H. Lee, Y. Kuang, S. Jesmonth, K. Jeffrey,
R. J. Ruano, J. Hsu, K. Gopalakrishnan, B. David, A. Zeng, and
C. K. Fu, “Do as i can, not as i say: Grounding language in robotic
affordances,” in 6th Annual Conference on Robot Learning, 2022.
[Online]. Available: https://openreview.net/forum?id=bdHkMjBJG w

[7] I. Singh, V. Blukis, A. Mousavian, A. Goyal, D. Xu, J. Tremblay,
D. Fox, J. Thomason, and A. Garg, “Progprompt: Generating situated
robot task plans using large language models,” in 2023 IEEE Inter-

national Conference on Robotics and Automation (ICRA), 2023, pp.
11 523–11 530.

[8] J. Liang, W. Huang, F. Xia, P. Xu, K. Hausman, B. Ichter, P. Florence,
and A. Zeng, “Code as policies: Language model programs for em-
bodied control,” in 2023 IEEE International Conference on Robotics

and Automation (ICRA), 2023, pp. 9493–9500.
[9] I. Singh, V. Blukis, A. Mousavian, A. Goyal, D. Xu, J. Tremblay,

D. Fox, J. Thomason, and A. Garg, “Progprompt: program genera-
tion for situated robot task planning using large language models,”
Autonomous Robots, 08 2023.

[10] T. Silver, S. Dan, K. Srinivas, J. B. Tenenbaum, L. P. Kaelbling, and
M. Katz, “Generalized planning in pddl domains with pretrained large
language models,” 2023.

[11] B. Liu, Y. Jiang, X. Zhang, Q. Liu, S. Zhang, J. Biswas, and P. Stone,
“Llm+p: Empowering large language models with optimal planning
proficiency,” arXiv preprint arXiv:2304.11477, 2023.

[12] S. S. Kannan, V. L. N. Venkatesh, and B.-C. Min, “Smart-
llm: Smart multi-agent robot task planning using large language
models,” ArXiv, vol. abs/2309.10062, 2023. [Online]. Available:
https://api.semanticscholar.org/CorpusID:262055166

[13] Z. Mandi, S. Jain, and S. Song, “Roco: Dialectic multi-robot collab-
oration with large language models,” 2023.

[14] E. Kolve, R. Mottaghi, W. Han, E. VanderBilt, L. Weihs, A. Herrasti,
D. Gordon, Y. Zhu, A. Gupta, and A. Farhadi, “AI2-THOR: An
Interactive 3D Environment for Visual AI,” arXiv, 2017.

[15] D. Bai, I. Singh, D. Traum, and J. Thomason, “Twostep: Multi-agent
task planning using classical planners and large language models,”
2025. [Online]. Available: https://arxiv.org/abs/2403.17246

https://api.semanticscholar.org/CorpusID:1397894
https://doi.org/10.1145/2043174.2043195
https://www.sciencedirect.com/science/article/pii/S0004370202001868
https://www.sciencedirect.com/science/article/pii/S0004370202001868
https://proceedings.mlr.press/v162/huang22a.html
https://openreview.net/forum?id=bdHkMjBJG_w
https://api.semanticscholar.org/CorpusID:262055166
https://arxiv.org/abs/2403.17246

	Introduction
	Multi-agent Planning Method: TwoStep
	Results
	Conclusion
	References

