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Abstract— When instructing robots, users want to flexibly
express constraints, refer to arbitrary landmarks, and verify
robot behavior, while robots must disambiguate instructions
into specifications and ground instruction referents in the real
world. To address this problem, we propose Language Instruc-
tion grounding for Motion Planning (LIMP), an approach that
enables robots to verifiably follow complex, open-ended in-
structions in real-world environments without prebuilt semantic
maps. LIMP constructs a symbolic instruction representation
that reveals the robot’s alignment with an instructor’s intended
motives and affords the synthesis of correct-by-construction
robot behaviors. We conduct a large-scale evaluation of LIMP
on 150 instructions across five real-world environments, demon-
strating its versatility and ease of deployment in diverse,
unstructured domains. LIMP performs comparably to state-
of-the-art baselines on standard open-vocabulary tasks and
additionally achieves a 79% success rate on complex spatiotem-
poral instructions, significantly outperforming baselines that
only reach 38%. 1

I. INTRODUCTION

R
OBOTS need a rich understanding of natural language

to be instructable by non-experts in unstructured en-

vironments. People, on the other hand, need to be able to

verify that a robot has understood a given instruction and

will act appropriately. Achieving these objectives, however,

is challenging as natural language instructions often feature

ambiguous phrasing, intricate spatiotemporal constraints, and

unique referents. To illustrate, consider the instruction shown

in Figure 1: “Bring the green plush toy to the white-

board in front of it, watch out for the robot in front of

the toy”. Solving such a task requires a robot to ground

open-vocabulary referents, follow temporal constraints, and

disambiguate objects using spatial descriptions. Foundation

models [1], [2] offer a path to achieving such complex

long-horizon goals; however, existing approaches for robot

instruction following have largely focused on navigation [3],

[4], [5], [6], [7]. These methods, broadly classified under

object goal navigation [8], enable navigation to instances of

an object category but are limited in their ability to localize

spatial references and disambiguate object instances based

on descriptive language. Other works [9], [10], [11] extend

instruction following to mobile manipulation but are limited

to tasks with simple temporal constraints expressed in unam-

biguous language. Moreover, existing efforts typically rely

on Large Language Models (LLMs) as complete planners,

bypassing intermediate symbolic representations that could

∗Equal Contribution
†Corresponding Author (Email: benedict quartey@brown.edu)
1See supplementary materials and demo videos at robotlimp.github.io

Fig. 1: Our approach executing the instruction “Bring the green plush toy

to the whiteboard in front of it, watch out for the robot in front of the toy”.
The robot dynamically detects and grounds open-vocabulary referents with
spatial constraints to construct an instruction-specific semantic map, then
synthesizes a task and motion plan to solve the task. In this example, the
robot navigates from its start location (yellow, A), to the green plush toy
(green, B), executes a pick skill then navigates to the whiteboard (blue,
C), and executes a place skill. Note that the robot has no prior semantic
knowledge of the environment.

provide verification of correctness before execution. Alterna-

tive approaches leveraging code-writing LLMs [5], [6], [12]

are susceptible to errors in generated code, which may lead

to unsafe robot behaviors. Mapping natural language to spec-

ification languages like temporal logic [13] provides a robust

framework for language disambiguation, handling complex

temporal constraints, and behavior verification. However,

prior works along this line require prebuilt semantic maps

with discrete sets of prespecified referents/landmarks from

which instructions can be constructed [7], [14], [15].

We propose Language Instruction grounding for Motion

Planning (LIMP), a method that leverages foundation

https://robotlimp.github.io/


Fig. 2: [A] LIMP translates natural language instructions into temporal logic expressions, where open-vocabulary referents are applied to predicates that
correspond to robot skills––note the context-aware resolution of the phrase “blue one” to the referent “blue sofa”. [B] Vision-language models detect
referents, while spatial reasoning disambiguates referent instances to generate a 3D semantic map that localizes instruction-specific referents. [C] Finally,
the temporal logic expression is compiled into a finite-state automaton, which a task and motion planner uses with dynamically-generated task progression
semantic maps to progressively identify goals and constraints in the environment, and generate a plan that satisfies the high-level task specification.

models and temporal logics to dynamically generate

instruction-conditioned semantic maps that enable robots

to construct verifiable controllers for following navigation

and mobile manipulation instructions with open vocabulary

referents and complex spatiotemporal constraints.

II. LANGUAGE INSTRUCTION GROUNDING FOR MOTION

PLANNING

LIMP interprets expressive natural language instructions

to generate instruction-conditioned semantic maps,

enabling robots to solve long-horizon tasks with complex

spatiotemporal constraints (Figure 2). Our approach has

a modular structure consisting of a Language Instruction

Module, a Spatial Grounding Module and a Task and

Motion Planning Module.

A. Language Instruction Module

In this module, we leverage a large language model (LLM)

ψ to translate a natural language instruction l into a linear

temporal logic specification ϕl with a novel composable

syntax for referent disambiguation. We achieve this through

a two-stage in-context learning strategy. The first stage

prompts ψ to translate l into a conventional LTL formula

φl where propositions are referent objects. The second

stage takes l and φl as input and prompts ψ to generate a

new formula ϕl with predicate functions corresponding to

parameterized robot skills, as shown in Figure 2.a.

B. Spatial Grounding Module

In the spatial grounding module, we detect and localize

specific instances of objects referenced in a given instruction.

This module leverages a vision-language model (VLM) to

detect all referent occurrences from prior observations of

the environment. An initial semantic map with all detected

referent instances is generated by backprojecting pixels

in segmented referent masks unto a 3D map. The spatial

comparators of each referent object is resolved with respect

to the origin coordinate frame of reference and used to filter

referent instances to localize the exact referent instances

described in the instruction.

C. Task and Motion Planning Module

Finally, our TAMP module synthesizes and sequences

navigation and manipulation behaviors to produce a plan that

satisfies the temporal and spatial constraints expressed in the

given instruction. Our TAMP algorithm compiles the LTL

formula with parameterized robot skills into an equivalent

finite-state automaton to generate a verifiably correct task

and motion plan. A path from the initial to the accepting

state in this automaton is a high-level task plan that

interleaves navigation and manipulation objectives required

to satisfy the instruction. Automaton states are connected

by transition edges representing the logical expressions

required for transitions. For each transition, our algorithm

executes the necessary low-level behaviors: for manipulation

subgoals, it executes the appropriate parameterized skill;

for navigation subgoals, it dynamically localizes goal and

constraint regions and performs continuous path planning

using the Fast Marching Tree algorithm (FMT∗) [16].

III. DISCUSSION AND CONCLUSION

We perform a large scale evaluation and demonstrate our

approach on 150 instructions in five real-world environments.

In our experiments, LIMP performs comparably to state-

of-the-art baselines on standard open-vocabulary tasks

and additionally achieves a 79% success rate on complex

spatiotemporal instructions, significantly outperforming

baselines that only reach 38%. Beyond the verification

benefits of symbolic planning, our approach ensures each

robot step adheres to constraints while achieving subgoals,

contrasting existing approaches [10], [12] which struggle to

adhere to strict temporal constraints—for example, avoiding

a specific referent while approaching another.

Foundation models hold significant promise for advancing

the next generation of autonomous robots. Our results

suggest that combining these models—LLMs for language

and VLMs for vision—with established methods for safety,

explainability, and verifiable behavior synthesis can lead to

more reliable and capable robotic systems. Visit our project

website to see our full paper and robot demonstration videos.
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