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Abstract—In automated task planning, symbolic state estima-
tion is the process of translating sensor input into a high-level
task state. This is especially important in robotic settings where
unpredictable environments and actions often lead to unexpected
outcomes. State estimation enables the agent to manage uncer-
tainties, adjust its plans, and make more informed decisions.
Traditionally, researchers and practitioners relied on hand-
crafted and hard-coded state estimation functions to determine
the abstract state defined in a specific task domain. Advance-
ments in Vision-Language Models (VLMs) enable autonomous
retrieval of semantic information from visual input. We present
Semantic Symbolic State Estimation (S3E), the first general-
purpose symbolic state estimator based on VLMs that can be
applied in various robot task settings without specialized coding
or additional exploration. S3E takes advantage of the foundation
model’s internal world model and semantic understanding to
assess the likelihood of certain symbolic components of the
environment’s state. We analyze S3E as a multi-label classifier,
reveal different kinds of uncertainties that arise when using it,
and show how they can be mitigated using natural language and
targeted environment design. While our method is generic, we
aim to facilitate symbolic state estimation in robotic settings. We
show that S3E can achieve over 90% state estimation precision
in our simulated and real-world robot experiments.

I. INTRODUCTION

Automated task planning is crucial for intelligent robotic

agents to solve complex and ever-changing tasks [5, 4]. In

some cases, it is assumed that an agent has full domain knowl-

edge (the Closed World Assumption (CWA) [10]) and that all

task-related facts are known. However, an agent’s observations

are often based on sensing capabilities from which extracting

these facts is non-trivial. This is especially true in real-world

robot applications. Symbolic state estimation is the process of

obtaining a high-level state of the environment, i.e., translating

numeric sensor input into semantic facts [2, 1, 6]. This helps

monitor plan execution; an agent reaching an unexpected state

may be grounds for replanning or reporting of task failure.

This is particularly important in robotic settings where agents

perform error-prone motions in the physical world.

Example 1: A robotic arm is tasked with rearranging

groceries on multiple tables. The goal is to move a box

of cereal and a carton of milk to a specific table where

the hungry human would like to prepare her breakfast. A

task planner chooses the following plan: “pick-up(milk, ta-

ble1)”, “put-down(milk, table3)”, “pick-up(cereal, table2)”,

“put-down(cereal, table3)”. While moving to place the cereal

on table number 3, the object is dropped due to an unstable

grasp and lands on table number 1. Using a state estimator,

we detect an unexpected state: the cereal box is not on table

number 3. We thus call the task planner once more to obtain

the following plan that will lead us to the goal state: “pick-

up(cereal, table1)”, “put-down(cereal, table3)”.

Current state-of-the-art task planning methods rely on hand-

crafted and hard-coded state estimation functions [8, 3]. This

is time-consuming and relies on expert domain knowledge and

advanced sensing equipment, which results in domain-specific

outputs that do not adapt to environment or task changes.

We desire a general state estimation function that requires no

specialized coding, no additional exploration, and generalizes

to a large scope of tasks.

With the rise of powerful instruction-based Vision-Language

Models (VLMs), i.e., vision-based foundation models, it is

now possible to answer complex semantic questions about a

scene based on visual input alone [7, 9]. Previous approaches

required a specialized combination of computer vision tools

to answer specific question sets. By comparison, VLMs are

designed to answer any question. Questions are specified in

natural language and are mostly answered accurately if the

input is within its training distribution.

We introduce Semantic Symbolic State Estimation (S3E),

the first zero-shot state estimator based on VLMs. Our objec-

tive is to provide a general, versatile, and performant solution

for state estimation that will accelerate the construction of

state estimation functions for researchers and practitioners of

task planning. S3E exploits the foundation model’s internal

world model and semantic understanding [12, 13] to assess

the likelihood of task-related symbolic components of the en-

vironment’s state as the agent manipulates the physical world.

It consists of two stages: (1) translating symbolic predicate

definitions into natural language questions and (2) answering

them given visual input. We show that the translation stage

significantly improves performance in Appendix ??.

Fig. 1 demonstrates the usage of S3E in a real-world

robotics task. Our experiments show that a high-accuracy

zero-shot state estimation solution is possible. While this

approach is highly generic, we provide a video demonstration

of how S3E can be deployed in robotic manipulation tasks,

available as supplementary material1. To improve performance

1In the supplementary video we demonstrate how S3E is used for plan
execution monitoring, action failure detection, and task failure detection



(a) Setup.

pick-up
spray-bottle

in-table-section(green-mug,blue): False
in-table-section(green-mug,white): True
in-table-section(mineral-water-bottle,blue): False
in-table-section(mineral-water-bottle,white): True
in-table-section(red-can,blue): True
in-table-section(red-can,white): False
in-table-section(spray-bottle,blue): True
in-table-section(spray-bottle,white): False
robot-gripper-empty(): True
robot-holding-in-air(green-mug): False
robot-holding-in-air(mineral-water-bottle): False
robot-holding-in-air(red-can): False
robot-holding-in-air(spray-bottle): False

in-table-section(green-mug,blue): False
in-table-section(green-mug,white): True
in-table-section(mineral-water-bottle,blue): False
in-table-section(mineral-water-bottle,white): True
in-table-section(red-can,blue): True
in-table-section(red-can,white): False
in-table-section(spray-bottle,blue): False
in-table-section(spray-bottle,white): False
robot-gripper-empty(): False
robot-holding-in-air(green-mug): False
robot-holding-in-air(mineral-water-bottle): False
robot-holding-in-air(red-can): False
robot-holding-in-air(spray-bottle): True

(b) Example transition annotated with S3E. State changes highlighted.

Fig. 1. Visual results from a robotic pick-and-place task using S3E - after picking up the spray bottle, ’robot-gripper-empty()’ and in-table-section(spray-bottle,
blue)’ are set from True to False. We refer the reader to the supplementary materials for a demo video of this example.

alongside the VLM’s strong priors, we use natural language

instruction and targeted environment design to remove ambi-

guities and reduce uncertainties about the environment or task.

We analyze S3E as a multi-label classifier where the labels

are the set of grounded predicates that make up all possible

facts about the task state. Our experiments focus on usability

and showcase a simulated and real-world robotic domain. S3E

also achieves high performance in a photorealistic blocksworld

with ever-changing objects in the Appendix, showing that it is

truly general-purpose and versatile. We propose task-specific

solutions to handle two kinds of uncertainties in our proposed

state estimator. The first is the model’s uncertainty regarding

the state. The second stems from the subjective nature of the

actual state relative to the intent of the task designer, i.e.,

whether a certain property holds for a given state is in the eye

of the beholder. We show examples of these uncertainties and

how they can be reduced using natural language instruction

and minimal environment design. This improves on previous

work that elicit uncertainties in language models [11, 14]

by leveraging this idea for symbolic state estimation in the

context of task planning. Regardless of these uncertainties,

general-purpose state estimation is a needed change from the

specialized solutions offered by today’s state-of-the-art.

This paper presents the following contributions:

• Introduction of Semantic Symbolic State Estimation

(S3E): first zero-shot symbolic state estimator using

vision-based foundation models.

• Proposal of a general solution for high-level state estima-

tion in task planning.

• Identification and mitigation of model uncertainty and

task-specific ambiguity.

• Empirical demonstration of S3E’s effectiveness in simu-

lated and real-world environments.

A video demo of S3E is available at the

following link: https://drive.google.com/file/d/

1meD4Yg3l1gNjmwjP-C9-dYPSfVeeTf2R/view?usp=sharing
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