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Abstract—Robotic agents are increasingly required to operate
in dynamic, uncertain, and partially observable environments.
Our goal is to develop effective multi-robot systems that can make
principled real-time decisions about when and how to assist their
teammates. We support multi-robot settings in which an agent
can offer assistance to a team member by modifying the physical
environment, for example by moving obstacles that block the
ability to perceive or reach objects. These assistance capabilities
create opportunities for meaningful collaboration in multi-robot
systems but introduce a challenging decision-making problem:
assuming the ability to assist is limited, what is the most effective
helping action among the multiple alternatives, and, in case there
are multiple agents that may require assistance, which agent
should be assisted next?

To address these challenges, we offer a principled approach
for quantifying and comparing the potential benefits of assistive
actions by formulating Value of Assistance (VOA) for robotic
POMDP agents, and by developing computationally efficient
heuristics for VOA estimation. Our empirical evaluation on both
a standard POMDP benchmark and a collaborative manipulation
setting demonstrates how our suggested measures enable real-
time decision-making while maintaining sufficient accuracy for
helping action selection.

I. INTRODUCTION

Robotic agents are required to operate in increasingly dy-

namic and unpredictable environments, in which they lack

complete information about the world due to sensor noise, a

limited field of view, or incomplete models of the environment.

In this work, we support multi-robot settings in which agents

can assist each other in different ways. For example, a team

member can move obstacles or rearrange objects to facilitate

manipulation or to improve observability.

These assistance options create opportunities for meaningful

collaboration in multi-robot systems but introduce several

decision-making challenges; An agent must select the most

effective helping action from multiple alternatives, evaluate

whether pausing its current task to assist another agent would

be worthwhile, and determine which agent would benefit most

from assistance when multiple team members may require

assistance.

To address these challenges, our work focuses on formu-

lating ways for estimating Value of Assistance (VOA) for

partially informed robotic agents and on providing principled

approaches for quantifying and comparing the potential bene-

fits of different assistive actions.

Example: 1 To demonstrate, consider our two-agent evalu-

ation setting depicted in Figure 1[left]. Agent1 on the right

is equipped with a parallel gripper and a camera, and is

tasked with a complex manipulation task: placing two cups

on the table and pouring soda into them from a can. For this,

the agent must plan and execute high-level actions - such as

picking and placing objects - while moving to positions that

enable manipulation or sensing of the workspace.

In this collaborative setting, Agent2 on the left can offer

assistance by moving obstacles (which is not possible for

Agent1) using its vacuum gripper, though it has its own task.

Figure 1[right] presents two possible options. On the top,

moving Obstacle #1 enables observation of the previously

occluded can. On the bottom, moving Obstacle #2 facilitates

grasping the blue cup. We aim to support the decision of

the assisting robot by proposing ways to quantify Value of

assistance (VOA) as the expected long-term benefit of an

assistive action. This will allow selecting the best action and

comparing its expected benefit against the cost incurred from

pausing Agent2’s task.

Beyond this illustrative example, assessing VOA is relevant

to a broader class of applications such as automated manufac-

turing, environmental monitoring, and construction in which

agents can assist each other but need to consider their own

resources and objectives. In such settings, deciding how to

assist other agents requires considering the long-term effects

of actions. For example, will clearing a path benefit only the

current navigation segment or enable access to multiple future

goals?

As is typical in such settings, we model the agent’s

task using a Partially Observable Markov Decision Process

(POMDPs) [1]. POMDPs provide a mathematical framework

for decision-making under uncertainty and support principled

probabilistic reasoning, balancing the trade-off between ex-

ploring to gather more information and exploiting current

knowledge to maximize reward. POMDPs are particularly

relevant to the robotic settings we aim to support since

they allow capturing the complexities of noisy sensors, im-

perfect actuation, and partial observability inherent in real-

world robotic tasks. However, together with their expressive

power, exact POMDP solutions are computationally intractable

for large problems [6]. This has led to the development of

1The accompanying video demonstrates this setup and
assistance scenario in action: https://drive.google.com/file/d/
19xzithddSJAobt-dG6F0aQVZpKnTjqwp/view?usp=sharing

https://drive.google.com/file/d/19xzithddSJAobt-dG6F0aQVZpKnTjqwp/view?usp=sharing
https://drive.google.com/file/d/19xzithddSJAobt-dG6F0aQVZpKnTjqwp/view?usp=sharing


Fig. 1: A collaborative multi-robot setting. [left] Initial setup: Agent1 has a camera and a parallel gripper that can only

manipulate the smaller objects in the scene, and needs to pour soda from the can into the two cups, after placing them on the

table. Agent2 has a Vaccum gripper with which it can pick up the large wooden blocks. It might have its own task, but can

pause it to assist Agent1 by moving one of the larger blocks. [right] Two assistance options: on the top, by moving Obstacle#1,

the previously occluded can become visible. On the bottom, moving Obstacle#2 makes it easier to reach the blue cup. We

formulate VOA measures to compare the expected benefit of each assistance action and choose the best one.

various online planning methods that have enabled practical

applications in robotics [3, 2].

As a result of the complexity of POMDP decision making

and its online, approximate nature, exact computation of VOA

becomes intractable for real-time decision making, especially

when there are many possible interventions to consider and

there is a need reevaluate the policy to determine the effect

interventions will have the agent’s decisions.

With the objective of supporting effective real-time assis-

tance decisions, we formulate Value of Assistance (VOA)

for POMDP agents and address computational challenges

by developing domain-agnostic heuristics that enable rapid

evaluation of potential helping actions while accounting for

their long-term effects.

We formulate Value of Assistance (VOA) as the differ-

ence between the expected future rewards an agent would

accumulate with and without assistance. For POMDP agents

using online planning, directly computing this value through

policy evaluation is computationally prohibitive for real-time

decision-making. To address this challenge, we develop three

domain-agnostic heuristics for efficiently approximating VOA:

• First-Action Value (hFA): Approximates VOA by plan-

ning only the first step with and without assistance, using

the MCTS search tree’s root node value estimate.

• Rollout-Policy (hπRollout
): Uses the planner’s internal

rollout policy directly for action selection, avoiding the

computational cost of tree construction.

• Full-Information (hFO): Transforms the POMDP into a

fully-observable deterministic planning problem, inspired

by [4, 5], evaluating assistance based on optimal deter-

ministic plans.

We evaluated these heuristics on both a modified RockSam-

ple POMDP benchmark and a collaborative robotic manipu-

lation task. Our empirical results demonstrate that the Full-

Information heuristic provides the best balance of compu-

tational efficiency and accuracy across domains. With com-

putation times under 0.1 seconds, it achieves high corre-

lation with empirically measured VOA values and consis-

tently identifies beneficial helping actions. While the First-

Action Value heuristic also demonstrates promising results

with modest computational requirements, the Rollout-Policy

approach proves inadequate for capturing the complex long-

term effects of assistance actions. These findings enable real-

time decision-making about assistance in multi-robot systems

while maintaining sufficient accuracy for effective helping

action selection.
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