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Abstract—Foundation models, such as large language models
(LLMs) and vision-language models (VLMs) contain a wide
breadth of domain knowledge useful to robotic tasks, specifically
for planning. In terms of robot task planning, existing work
uses language models to either directly output task plans or
to generate planning definitions in representations like PDDL.
However, we have recently shown that an LLM is best suited for
object-level planning, where knowledge is extracted from an LLM
and structured into an object-level representation (as a functional
object-oriented network or FOON for short) to generate PDDL
subgoals. This work briefly summarizes the current state of our
work that interfaces object-level planning for task and motion
planning (TAMP) while also discussing further opportunities to
improve this planning approach with language models.

I. INTRODUCTION

Motivated by the advent of foundation models like large lan-

guage models (LLMs) and vision-language models (VLMs),

contemporary research aims to exploit their capabilities for

a variety of tasks, including planning for robots and em-

bodied agents [1, 2, 3, 4]. Language models encode domain

knowledge about the world, which is useful for language-

conditioned or language-guided decision-making. However,

our most recent work has shown that state-of-the-art ap-

proaches are not suited for handling complex goal-oriented

tasks at the task level [5]. Some approaches position LLMs

either as task planners [2, 3, 6], depriving such methods of

the guarantees promised by classical planning (viz. optimality

and completeness), or as task description generators [7, 8, 9].

These approaches fail to generate plan specifications that are

guaranteed to work due to the LLM’s lack of embodiment.

We propose to tackle these limitations by articulating lan-

guage models and TAMP using object-level planning (OLP)

[10], which focuses on object state transitions at the object

level [11]. Object-level plans, like recipes in a cookbook, are

agnostic to the robot and its environment; instead, they provide

object constraints, such as how object properties change when

combined with other objects, rather than motion constraints.

Our previous work [12] has shown how object-level plans

simplify complex long-horizon tasks by decomposing them

into sub-problems that can be quickly and effectively executed

using TAMP. This is due to an object-centric representation

compatible with both OLP and TAMP. On the one hand, this

representation encodes relevant changes in the object space for

OLP. On the other hand, it allows for encoding abstraction of

motion constraints for TAMP [13, 14]. With an object-centric

representation, actions can be easily mapped to initial states

and goals that are compatible with TAMP via PDDL [15] in
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a hierarchical planning approach. Our most recent work [5]

generates object-level plans (via language model prompting)

to realize robot execution using our framework (see Figure 1).

Object-level planning acts as an interface between human

language and TAMP via an object-level representation (OLR)

called the functional object-oriented network (FOON) [16].

Our prior work has demonstrated how object-level knowledge

in FOON can automatically generate PDDL subgoals [12].

However, this method assumes that we have a collection

of partial plans specified as FOON graphs. This poses the

question of how we can acquire object-level plans that can

be used to bootstrap such methods. Previous work predating

foundation models has shown how to extract FOON object-

level plans directly from videos [17]; more recently, we have

explored how we can exploit language models to generate

FOONs compatible with task and motion planning [5], provid-

ing an appealing alternative to learning FOONs from video.

Ultimately, this approach overcomes the inability of LLMs

to directly output feasible task plans while exploiting the

higher, object-level nature of LLM output and language as

a whole. This paper summarizes the relevant aspects of our

recent contributions to articulate language models and TAMP

using object-level planning [12, 5], and describes the ongoing

and future lines of research that enable generalization and

portability in robot domains.

II. EXPERIMENTS

In our recent contributions, we have demonstrated the

validity of our approaches through several experiments, for

which we describe each setting as well as key insights and

findings. We conducted several experiments in a simulated

table-top environment in CoppeliaSim [18] with a robot arm

affixed to the table upon which objects are initialized and

randomly configured. We use Fast Downward [19], an off-

the-shelf PDDL solver, for task-level planning in our method

as well as competing baselines. We provide further details in

the following subsections.

A. Object-level Planning for Bootstrapping TAMP

In our first set of experiments [12], we defined two complex

long-horizon cooking scenarios: Bloody Mary cocktail and

Greek salad preparation.1 Our experiments have shown that

our method enables a robot to successfully execute each task

with 96% and 80% success for both tasks, where completing

each task on average requires the successful execution of 28

and 35 actions respectively. Moreover, we have demonstrated

that we can flexibly generate varying task (or micro-) plans for

1Demonstration videos for Paulius and Agostini [12] can be found on the
project’s webpage: https://davidpaulius.github.io/foon-lhpe/

https://davidpaulius.github.io/foon-lhpe/
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Fig. 1. Our most recent work interfaces with a language model to generate object-level plans to bootstrap task and motion planning [5]. Our approach
generates task-level subgoals as PDDL definitions by grounding object-level subgoals to a robot’s environment; with these task-level definitions, we perform
task planning to obtain task plan segments per object-level action, which we execute using motion-level planning, improving upon previous work [12].
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Fig. 2. Illustration from prior work [12] showing how an object-level action
can be resolved by different task plans depending on the environment state.

the same object-level (or macro-) plan (see Figure 2), which

mirrors the way we humans can execute recipes in varying

ways depending on the state at run time. Additionally, we

have compared our method against hierarchical task networks

(HTNs) [20] and regular planning without object-level sub-

goals (provided by functional units) and show a better time

complexity than said alternative methods.

B. Exploiting LLMs for Object-level Planning

In our second set of experiments [5], we evaluate our LLM-

based OLP approach on three tasks of increasing difficulty:

1) tower building, where a robot must assemble a tower of

blocks of a given height; 2) spelling, where a robot must

construct a tower that spells a given word; and 3) organizing

table, where a robot must place all alike blocks into piles.2 We

compare our OLP-based method to several baseline methods:

LLM-Planner, LLM+P [7] and DELTA [9]. Following the

previously introduced tracks of LLM-based planning work, the

LLM-Planner baseline uses a LLM to directly output a task

plan, given a textual description of the robot’s environment

state and allowable actions, while the LLM+P and DELTA

baselines use a LLM to directly generate PDDL definitions,

given PDDL examples and a textual description of the robot’s

environment state. All methods used Chat-GPT [21]. We have

2Project Website for Paulius et al. [5]: https://davidpaulius.github.io/olp llm/

demonstrated how our OLP approach result in more complete

executions of tasks (86%, 80%, and 81% for all three tasks,

respectively) while jointly improving time complexity over

baseline methods and reducing the number of tokens generated

by the LLM (especially when compared to the best competing

baseline DELTA [9]). Although LLM-Planner generates task

plans without a solver, it does not complete a majority of tasks

because the LLM has poor understanding of the configuration

of the robot’s environment for collision-free motion. Baselines

that generate PDDL file definitions are also prone to issues

due to the LLM’s inability to consistently generate correct or

accurate files.

III. CONCLUSION

This work briefly reviews our recent contributions to hier-

archical planning that integrate an additional planning layer

situated above TAMP known as object-level planning [10].

This enables robots to flexibly find planning solutions from

plan sketches [12] (object-level plans) that can be extracted

via LLM prompting [5]. When compared to alternative LLM-

based planning approaches that either use a LLM as a planner

or as a generator of planning definitions like PDDL, our

method flexibly enables a robot to solve a wide range of tasks

that leverage the expressiveness of natural language. Finally,

we have also demonstrated how object-level planning allows

a robot to flexibly obtain task plans for the same object-level

subgoals, and that the subgoals provided by an object-level

plan aid to improve time complexity in computation.
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