
From Language to Action with Object-Level Planning

David Paulius1∗, Alejandro Agostini2, George Konidaris1

Abstract—Foundation models, such as large language models
(LLMs) and vision-language models (VLMs) contain a wide
breadth of domain knowledge useful to robotic tasks, specifically
for planning. In terms of robot task planning, existing work
uses language models to either directly output task plans or
to generate planning definitions in representations like PDDL.
However, we have recently shown that an LLM is best suited for
object-level planning, where knowledge is extracted from an LLM
and structured into an object-level representation (as a functional
object-oriented network or FOON for short) to generate PDDL
subgoals. This work briefly summarizes the current state of our
work that interfaces object-level planning for task and motion
planning (TAMP) while also discussing further opportunities to
improve this planning approach with language models.

I. INTRODUCTION

Motivated by the advent of foundation models like large lan-

guage models (LLMs) and vision-language models (VLMs),

contemporary research aims to exploit their capabilities for

a variety of tasks, including planning for robots and em-

bodied agents [1, 2, 3, 4]. Language models encode domain

knowledge about the world, which is useful for language-

conditioned or language-guided decision-making. However,

our most recent work has shown that state-of-the-art ap-

proaches are not suited for handling complex goal-oriented

tasks at the task level [5]. Some approaches position LLMs

either as task planners [2, 3, 6], depriving such methods of

the guarantees promised by classical planning (viz. optimality

and completeness), or as task description generators [7, 8, 9].

These approaches fail to generate plan specifications that are

guaranteed to work due to the LLM’s lack of embodiment.

We propose to tackle these limitations by articulating lan-

guage models and TAMP using object-level planning (OLP)

[10], which focuses on object state transitions at the object

level [11]. Object-level plans, like recipes in a cookbook, are

agnostic to the robot and its environment; instead, they provide

object constraints, such as how object properties change when

combined with other objects, rather than motion constraints.

Our previous work [12] has shown how object-level plans

simplify complex long-horizon tasks by decomposing them

into sub-problems that can be quickly and effectively executed

using TAMP. This is due to an object-centric representation

compatible with both OLP and TAMP. On the one hand, this

representation encodes relevant changes in the object space for

OLP. On the other hand, it allows for encoding abstraction of

motion constraints for TAMP [13, 14]. With an object-centric

representation, actions can be easily mapped to initial states

and goals that are compatible with TAMP via PDDL [15] in

1Brown University, Providence, RI, USA.
2University of Innsbruck, Innsbruck, Austria.
∗Corresponding Author (Email: dpaulius@cs.brown.edu)

a hierarchical planning approach. Our most recent work [5]

generates object-level plans (via language model prompting)

to realize robot execution using our framework (see Figure 1).

Object-level planning acts as an interface between human

language and TAMP via an object-level representation (OLR)

called the functional object-oriented network (FOON) [16].

Our prior work has demonstrated how object-level knowledge

in FOON can automatically generate PDDL subgoals [12].

However, this method assumes that we have a collection

of partial plans specified as FOON graphs. This poses the

question of how we can acquire object-level plans that can

be used to bootstrap such methods. Previous work predating

foundation models has shown how to extract FOON object-

level plans directly from videos [17]; more recently, we have

explored how we can exploit language models to generate

FOONs compatible with task and motion planning [5], provid-

ing an appealing alternative to learning FOONs from video.

Ultimately, this approach overcomes the inability of LLMs

to directly output feasible task plans while exploiting the

higher, object-level nature of LLM output and language as

a whole. This paper summarizes the relevant aspects of our

recent contributions to articulate language models and TAMP

using object-level planning [12, 5], and describes the ongoing

and future lines of research that enable generalization and

portability in robot domains.

II. EXPERIMENTS

In our recent contributions, we have demonstrated the

validity of our approaches through several experiments, for

which we describe each setting as well as key insights and

findings. We conducted several experiments in a simulated

table-top environment in CoppeliaSim [18] with a robot arm

affixed to the table upon which objects are initialized and

randomly configured. We use Fast Downward [19], an off-

the-shelf PDDL solver, for task-level planning in our method

as well as competing baselines. We provide further details in

the following subsections.

A. Object-level Planning for Bootstrapping TAMP

In our first set of experiments [12], we defined two complex

long-horizon cooking scenarios: Bloody Mary cocktail and

Greek salad preparation.1 Our experiments have shown that

our method enables a robot to successfully execute each task

with 96% and 80% success for both tasks, where completing

each task on average requires the successful execution of 28

and 35 actions respectively. Moreover, we have demonstrated

that we can flexibly generate varying task (or micro-) plans for

1Demonstration videos for Paulius and Agostini [12] can be found on the
project’s webpage: https://davidpaulius.github.io/foon-lhpe/

https://davidpaulius.github.io/foon-lhpe/

Language
Prompt

Language Model Prompting

Large
Language

Model

Object-level Planning Task and Motion Planning

Object-level Plan
(FOON)

Object-level
Plan Examples

Task-level Planning

Motion-level Planning

Stage 1:
Get prototype

language plan (PL)

Stage 2:
Generate Plan
Schema (GT)

Sensing

PDDL
Subgoal

Generation

Fig. 1. Our most recent work interfaces with a language model to generate object-level plans to bootstrap task and motion planning [5]. Our approach
generates task-level subgoals as PDDL definitions by grounding object-level subgoals to a robot’s environment; with these task-level definitions, we perform
task planning to obtain task plan segments per object-level action, which we execute using motion-level planning, improving upon previous work [12].

G
re

e
k

 S
a

la
d

B
lo

o
d

y
 M

a
ry

 C
o

c
k

ta
il

(pick cup lemon_juice table_14)
(pour lemon_juice cup_lemon_juice drinking_glass)
(place cup_lemon_juice table_14)

(pick_rotated drinking_glass table 04)
(place drinking_glass table_04)
(pick cup_lemon juice table_09)
(pour lemon_juice cup_lemon_juice drinking_glass)
(place cup_lemon_juice table_09)

(pick tomato table_05)
(place tomato cutting_board)

(pick tomato shaker_salt)
(place tomato table_00)
(pick shaker_salt cutting_board)
(place shaker_salt table_04)
(pick tomato table_00)
(place tomato cutting_board)

a) No obstacle removal or cup rotationb No obstacle removal or cup rotation

e) No obstacle removal f) Obstacle removal below target object

c) Cup upside down, no obstacle removal

drinking glass
state:
<empty>

cup
state:
<contains: lemon juice>

lemon juice
state:
<in [cup]>

drinking glass
state:
<contains: lemon juice>

cup
state:
<empty>

lemon juice
state:
<in [drinking glass]>

pour

cutting board
state:
<empty>

state:
<whole>

cutting board
state:
<contains: tomato>

tomato
tomato

states:
<whole>
<on [cutting board]>

pick-and-place

a) Functional unit for pouring lemon juice

d) Functional unit for picking and placing tomato

Fig. 2. Illustration from prior work [12] showing how an object-level action
can be resolved by different task plans depending on the environment state.

the same object-level (or macro-) plan (see Figure 2), which

mirrors the way we humans can execute recipes in varying

ways depending on the state at run time. Additionally, we

have compared our method against hierarchical task networks

(HTNs) [20] and regular planning without object-level sub-

goals (provided by functional units) and show a better time

complexity than said alternative methods.

B. Exploiting LLMs for Object-level Planning

In our second set of experiments [5], we evaluate our LLM-

based OLP approach on three tasks of increasing difficulty:

1) tower building, where a robot must assemble a tower of

blocks of a given height; 2) spelling, where a robot must

construct a tower that spells a given word; and 3) organizing

table, where a robot must place all alike blocks into piles.2 We

compare our OLP-based method to several baseline methods:

LLM-Planner, LLM+P [7] and DELTA [9]. Following the

previously introduced tracks of LLM-based planning work, the

LLM-Planner baseline uses a LLM to directly output a task

plan, given a textual description of the robot’s environment

state and allowable actions, while the LLM+P and DELTA

baselines use a LLM to directly generate PDDL definitions,

given PDDL examples and a textual description of the robot’s

environment state. All methods used Chat-GPT [21]. We have

2Project Website for Paulius et al. [5]: https://davidpaulius.github.io/olp llm/

demonstrated how our OLP approach result in more complete

executions of tasks (86%, 80%, and 81% for all three tasks,

respectively) while jointly improving time complexity over

baseline methods and reducing the number of tokens generated

by the LLM (especially when compared to the best competing

baseline DELTA [9]). Although LLM-Planner generates task

plans without a solver, it does not complete a majority of tasks

because the LLM has poor understanding of the configuration

of the robot’s environment for collision-free motion. Baselines

that generate PDDL file definitions are also prone to issues

due to the LLM’s inability to consistently generate correct or

accurate files.

III. CONCLUSION

This work briefly reviews our recent contributions to hier-

archical planning that integrate an additional planning layer

situated above TAMP known as object-level planning [10].

This enables robots to flexibly find planning solutions from

plan sketches [12] (object-level plans) that can be extracted

via LLM prompting [5]. When compared to alternative LLM-

based planning approaches that either use a LLM as a planner

or as a generator of planning definitions like PDDL, our

method flexibly enables a robot to solve a wide range of tasks

that leverage the expressiveness of natural language. Finally,

we have also demonstrated how object-level planning allows

a robot to flexibly obtain task plans for the same object-level

subgoals, and that the subgoals provided by an object-level

plan aid to improve time complexity in computation.

ACKNOWLEDGEMENTS

The work discussed in this article was graciously sup-

ported by the Office of Naval Research (ONR) through

grant number N00014-21-1-2584, Echo Labs, the Helmholtz

Association, and the Austrian Science Fund (FWF) under

Projects M2659-N38 and P36965. This work was supported

by the Office of Naval Research (ONR) under REPRISM

MURI N000142412603, ONR grants N00014-21-1-2584 and

N00014-22-1-2592, Echo Labs, the Helmholtz Association,

and the Austrian Science Fund (FWF) under Projects M2659-

N38 and P36965. Partial funding was also provided by The

Robotics and AI Institute (formerly “The AI Institute”).

https://davidpaulius.github.io/olp_llm/

REFERENCES

[1] W. Huang, P. Abbeel, D. Pathak, and I. Mordatch, “Lan-

guage Models as Zero-Shot Planners: Extracting Ac-

tionable Knowledge for Embodied Agents,” in Proceed-

ings of the 39th International Conference on Machine

Learning (ICML), ser. Proceedings of Machine Learning

Research, vol. 162, 2022, pp. 9118–9147.

[2] B. Ichter, A. Brohan, Y. Chebotar, C. Finn, K. Hausman,

A. Herzog, D. Ho, J. Ibarz, A. Irpan, E. Jang, R. Julian,

D. Kalashnikov, S. Levine, Y. Lu, C. Parada, K. Rao,

P. Sermanet, A. T. Toshev, V. Vanhoucke, F. Xia, T. Xiao,

P. Xu, M. Yan, N. Brown, M. Ahn, O. Cortes, N. Sievers,

C. Tan, S. Xu, D. Reyes, J. Rettinghouse, J. Quiambao,

P. Pastor, L. Luu, K.-H. Lee, Y. Kuang, S. Jesmonth, N. J.

Joshi, K. Jeffrey, R. J. Ruano, J. Hsu, K. Gopalakrishnan,

B. David, A. Zeng, and C. K. Fu, “Do As I Can, Not As

I Say: Grounding Language in Robotic Affordances,” in

Proceedings of the 6th Conference on Robot Learning,

ser. Proceedings of Machine Learning Research, vol. 205.

PMLR, 14–18 Dec 2023, pp. 287–318.

[3] D. Driess, F. Xia, M. S. M. Sajjadi, C. Lynch, A. Chowd-

hery, B. Ichter, A. Wahid, J. Tompson, Q. Vuong, T. Yu,

W. Huang, Y. Chebotar, P. Sermanet, D. Duckworth,

S. Levine, V. Vanhoucke, K. Hausman, M. Toussaint,

K. Greff, A. Zeng, I. Mordatch, and P. Florence, “PaLM-

E: An Embodied Multimodal Language Model,” in Pro-

ceedings of the International Conference on Machine

Learning (ICML). PMLR, 2023, pp. 8469–8488.

[4] S. S. Raman, V. Cohen, I. Idrees, E. Rosen, R. Mooney,

S. Tellex, and D. Paulius, “CAPE: Corrective Actions

from Precondition Errors using Large Language Models,”

in Proceedings of the 2024 IEEE International Con-

ference on Robotics and Automation (ICRA), 2024, pp.

14 070–14 077.

[5] D. Paulius, A. Agostini, B. Quartey, and G. Konidaris,

“Bootstrapping Object-level Planning with Large Lan-

guage Models,” in Proceedings of the 2025 IEEE Interna-

tional Conference on Robotics and Automation (ICRA),

2025.

[6] I. Singh, V. Blukis, A. Mousavian, A. Goyal, D. Xu,

J. Tremblay, D. Fox, J. Thomason, and A. Garg, “Prog-

Prompt: Generating Situated Robot Task Plans using

Large Language Models,” in Proceedings of the 2023

IEEE International Conference on Robotics and Automa-

tion (ICRA), 2023, pp. 11 523–11 530.

[7] B. Liu, Y. Jiang, X. Zhang, Q. Liu, S. Zhang,

J. Biswas, and P. Stone, “LLM+P: Empowering Large

Language Models with Optimal Planning Proficiency,”

arXiv preprint arXiv:2304.11477, 2023.

[8] Y. Xie, C. Yu, T. Zhu, J. Bai, Z. Gong, and

H. Soh, “Translating Natural Language to Planning

Goals with Large-Language Models,” arXiv preprint

arXiv:2302.05128, 2023.

[9] Y. Liu, L. Palmieri, S. Koch, I. Georgievski, and

M. Aiello, “DELTA: Decomposed Efficient Long-Term

Robot Task Planning using Large Language Models,”

arXiv preprint arXiv:2404.03275, 2024.

[10] D. Paulius, “Object-Level Planning and Abstraction,”

in CoRL 2022 Workshop on Learning, Perception, and

Abstraction for Long-Horizon Planning, 2022.

[11] O. Kroemer, S. Niekum, and G. Konidaris, “A Review of

Robot Learning for Manipulation: Challenges, Represen-

tations, and Algorithms,” Journal of Machine Learning

Research, vol. 22, no. 30, pp. 1–82, 2021.

[12] D. Paulius, A. Agostini, and D. Lee, “Long-Horizon

Planning and Execution with Functional Object-Oriented

Networks,” IEEE Robotics and Automation Letters,

vol. 8, no. 8, pp. 4513–4520, 2023.

[13] A. Agostini, M. Saveriano, D. Lee, and J. Piater, “Ma-

nipulation Planning Using Object-Centered Predicates

and Hierarchical Decomposition of Contextual Actions,”

IEEE Robotics and Automation Letters, vol. 5, no. 4, pp.

5629–5636, 2020.

[14] A. Agostini and J. Piater, “Unified Task and Motion

Planning using Object-centric Abstractions of Motion

Constraints,” arXiv preprint arXiv:2312.17605, 2023.

[15] D. McDermott, M. Ghallab, A. Howe, C. Knoblock,

A. Ram, M. Veloso, D. Weld, and D. Wilkins, “PDDL –

The Planning Domain Definition Language,” CVC TR-

98-003/DCS TR-1165, Yale Center for Computational

Vision and Control, Tech. Rep., 1998.

[16] D. Paulius, Y. Huang, R. Milton, W. D. Buchanan,

J. Sam, and Y. Sun, “Functional Object-Oriented Net-

work for Manipulation Learning,” in Proceedings of the

2016 IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS). IEEE, 2016, pp. 2655–

2662.

[17] A. B. Jelodar, D. Paulius, and Y. Sun, “Long Activity

Video Understanding Using Functional Object-Oriented

Network,” IEEE Transactions on Multimedia, vol. 21,

no. 7, pp. 1813–1824, July 2019.

[18] E. Rohmer, S. P. N. Singh, and M. Freese, “Cop-

peliaSim (formerly V-REP): a Versatile and Scalable

Robot Simulation Framework,” in Proceedings of the

2013 International Conference on Intelligent Robots

and Systems (IROS), 2013, pp. 1321–1326, http://www.

coppeliarobotics.com.

[19] M. Helmert, “The Fast Downward Planning System,”

Journal of Artificial Intelligence Research, vol. 26, pp.

191–246, 2006.

[20] M. Ghallab, D. Nau, and P. Traverso, Automated Plan-

ning and Acting. Cambridge University Press, 2016.

[21] OpenAI, “GPT-4 Technical Report,” 2023, accessed the

model on April 11, 2025.

https://shreyas-s-raman.github.io/CAPE/
https://shreyas-s-raman.github.io/CAPE/
https://arxiv.org/abs/2409.12262
https://arxiv.org/abs/2409.12262
https://openreview.net/forum?id=YfjoSxZekWW
https://arxiv.org/abs/2207.05800
https://arxiv.org/abs/2207.05800
https://arxiv.org/abs/2207.05800
http://www.coppeliarobotics.com
http://www.coppeliarobotics.com

	Introduction
	Experiments
	Object-level Planning for Bootstrapping TAMP
	Exploiting LLMs for Object-level Planning

	Conclusion

