
1

PLANTOR: LLM-Aided Knowledge Base Generation for

Temporal Planning of Robotic Tasks

Enrico Saccon, Edoardo Lamon, Luigi Palopoli, Marco Roveri

Abstract— We introduce PLANTOR, a novel framework that
utilises Large Language Models (LLMs) to aid in knowledge-
base (KB) management and Prolog-based planning for multi-
robot systems. This system employs a two-phase KB generation
for reusable reasoning and a three-step planning process
addressing temporal dependencies, resource constraints, and
parallel execution, ultimately producing Behavior Trees. Exper-
iments in block world and arch-building scenarios demonstrate
that LLMs can generate accurate KBs with limited human
input, while Prolog ensures formal correctness and explainabil-
ity, highlighting the potential of LLM integration for advanced,
human-understandable robotic planning.

I. INTRODUCTION

With the incredible progress made in the field of artificial

intelligence (AI) every day, one of the greatest challenges

is how to effectively manage the knowledge about the

environment that humans and robots share. In this abstract,

we are going to focus on: I) Knowledge-base generation:

using Large Language Models (LLMs) [1], [2] to create

a Knowledge Base (KB) written in Prolog [3] to exploit

its inference abilities. II) Explainable plan generation:

the framework should provide plans that are explainable.

III) Probabilistic extension: the framework must be able

to work under uncertainty. IV) Learning from experience:

the framework should be able to change KB learning from

the execution of the plan. State-of-the-art knowledge man-

agement systems heavily rely on ontologies to ground infor-

mation, especially common knowledge. However, ontologies

are usually task-specific, and their creation is complex and

time-consuming. Another important challenge for our work

comes from the need for the system to adapt to real-time

changes in the environment. The objectives of our framework

are I) robustness: the plan generated using the existing

frameworks usually does not consider any of the theories

behind planning and in particular probabilistic temporal

planning; II) handling partial knowledge: at the best of our

knowledge, no framework considers uncertainty in the KB;

III) multi-agent collaboration: the existing frameworks do

not directly address multi-agent systems. IV) input query:

none of the above frameworks considers the possibility of

taking as input a series of images depicting agent actions,

similar to the instructions to build a piece of furniture.

We acknowledge the support of the MUR PNRR project FAIR - Future
AI Research (PE00000013), the project INVERSE (Grant Agreement n.
101136067), the project MUR PRIN 2020 (RIPER - Resilient AI-Based
Self-Programming and Strategic Reasoning - CUP E63C22000400001) and
the contribution of VRT foundation.

Department of Information Engineering and Computer Science, Univer-

sity of Trento, Trento, Italy. edoardo.lamon@unitn.it

Fig. 1: The structure of the PLANTOR framework.

II. PLANTOR FRAMEWORK

In Figure 1, the general structure of the framework is

shown. The framework is composed of many blocks that can

be organised in the following macro blocks: i) Knowledge

management system: it takes care of creating the KB and

maintaining it. ii) Planner: it takes the KB and produces a

feasible plan. iii) Execution module: it produces a BT that

can then be executed calling the due APIs.

Knowledge Management System. This module takes a

natural language description of the environment, the actions

and the task we want to accomplish and queries an LLM

to create a Prolog KB. We use a few-shot prompting by

passing on a series of examples describing how we want the

output to be organized. After calling the APIs and getting

back a result, we enter a feedback loop in which we parse the

output to check for some common mistakes, both semantic

and syntactic. If the output is correct, then we incorporate

it into the KB, otherwise we ask the LLM to regenerate the

output minding to correct the detected errors. Similarly to the

work of [4], we employ two LLMs, one for the generation

of a high-level KB in which we incorporate actions and

predicates that generically describe the environment and the

agents’ capabilities, while a second LLM is provided with the

APIs that the agents expose, and it is responsible for mapping

high-level actions to low-level ones. In Figure 1, a human

is depicted, who has a twofold goal: I) provide the initial

description, and II) update the KB based on the feedback

loops. The idea is to automate the second step by checking

for some common mistakes and automatically updating the

description without the human-in-the-loop.

Planner We exploit Prolog inference mechanics to find

a series of actions in the KB, which let the system reach

the final state. Prolog search is depth-first, meaning that

it will find solutions that are probably sub-optimal, not to



2

mention the complexity. To mitigate such a problem, we

introduce a cap to the depth of the recursion. The list of

actions that Prolog extracts represents the total order plan.

Then we look for the achievers of the different actions, which

means that we look for the causality relationships. This

allows us to build a partial-order plan where some actions

may be executed in parallel. Next, we add the temporal

constraints over the durative actions, meaning that an end

action must occur within a certain amount of time from the

start action . By doing this, we extract a STN, the consistency

of which can be checked by asserting the absence of negative

cycles. At this point, as shown in Figure 1, we set up a

Mixed Integer Linear Programming (MILP) problem, which

allows for allocating the resources, e.g., the agents, to shrink

the makespan of the plan and parallelize possible actions.

This is done by considering the enabler of the different

actions from the STN. Using a combination of partial-order

planning and temporal planning, we can construct plans for

multiple agents working together. Moreover, given the Prolog

KB, it is possible to use inference to coordinate multiple

heterogeneous agents.

Behaviour Trees Once the MILP problem has been re-

solved, we extract a graph corresponding to an updated STN

and proceed with the creation of a Behaviour Tree (BT). We

start from the root node and we check the number of children

that a node has. If it has more than one, then the children do

not have a causal relationship and can be executed in parallel,

i.e., we add a parallel control node to the BT. Instead, if the

node has only one child, the control node will be sequential.

We also check for the number of parents of a node: if there

is more than one, then the node needs to wait for all the

parents to have terminated before being able to execute.

This procedure is repeated recursively until all nodes of the

updated STN have been inserted into the BT [5].

III. EXAMPLE APPLICATION AND CONCLUSION

The experimental evaluation of the proposed PLANTOR

framework aimed to assess its efficacy in knowledge-base

generation and task planning for multi-agent robotic sys-

tems [6]. The experimental section comprised evaluations

across two distinct robotics scenarios: the classical block

world and an arch-building task. These scenarios were used

to test both the knowledge base generation capabilities using

LLMs and the subsequent planning performance of the

framework.

We started evaluating the ability of LLMs (GPT-4 o1 and

GPT-4 120K) to generate accurate and consistent Prolog-

based knowledge bases from natural language descriptions.

The process involved a validation check of the input queries,

followed by the generation of high-level and low-level

knowledge bases. Few-shot prompting [7] and Chain-of-

Thought [8] techniques were utilised to guide the LLMs. The

generated KBs were assessed for formal correctness and their

ability to enable plan generation. Results indicated that GPT-

4o demonstrated a higher accuracy in both query validation

and KB generation compared to GPT-4 120K, although some

manual corrections were still required. Errors predominantly

occurred in the definition of actions and mappings between

high-level and low-level operations (see Table I).

Blocks world Arch
1 2 3 4 5 1 2

120K (HL) X(2,14) X(3,17) X(1,2) X(1,2) X(2,2) X X
o1 (HL) ✓ ✓ ✓ ✓ ✓ ✓ X(1,1)

120K (LL) X X X X X X X
o1 (LL) ✓ X(1,8) X(2,10) X(1,8) ✓ X(1,10) X(4,18)

TABLE I: Results for the generation of the KBs (HL and LL), using the model

on the left. A ✓indicates that the model’s output was completely correct, while X

denotes incorrect output. In cases where a fixable number of errors occurred, the first

value inside parentheses represents the number of distinct errors, and the second value

indicates the number of changes required to fix the KB.

The performance of the PLANTOR planner was evaluated

by measuring the execution times for different stages: high-

level total-order (TO) plan generation, low-level TO plan

generation, partial-order (PO) and resource extraction, and

the MILP-based optimisation and BT generation. Experi-

ments were conducted on the KBs generated and corrected

by GPT-4 o1. The results in Table II showed that the high-

level TO plan generation was the most computationally

intensive phase, attributed to the unguided Prolog search

in a potentially large state space. The subsequent steps,

including mapping to low-level actions, causal dependency

analysis, and MILP optimisation, were comparatively faster.

Scalability was also investigated by varying the number of

predicates in the knowledge base for a block world example,

revealing an expected increase in planning time with growing

complexity.

Blocks world Arch
Examples 1 2 3 4 5* 1 2

Plan Steps 2 4 8 6 6 6 6

HL TO Plan 30.81 1640.14 23083.37 81.18 39067.04 2633.67 520.62
LL TO Plan 0.11 0.22 0.37 0.31 0.45 0.27 0.27

PO and
Resources
Extraction

0.15 0.70 2.83 1.95 1.63 1.45 1.48

Total Prolog 63.81 1731.89 23512.65 102.65 39559.44 2726.42 550.69
MILP – BT 399.63 264.48 292.95 268.50 276.98 262.94 258.29

TABLE II: Execution times (in milliseconds) for planning.

To validate the framework’s applicability, a real-world ex-

periment was conducted using two Universal Robots (UR3e

and UR5e) to collaboratively build an arch from three

blocks. The PLANTOR framework successfully generated a

Behavior Tree from a natural language query, which was then

executed on the physical robots via ROS2, demonstrating the

feasibility of the generated plans in a tangible robotic setting.

In conclusion, the experimental evaluation demonstrated the

potential of the PLANTOR framework to integrate LLMs

for knowledge acquisition and Prolog for formal planning

in multi-robot systems. While LLMs showed promise in

generating knowledge bases with limited human intervention,

the logical planning component ensured correctness and ex-

plainability. The optimisation phase further enabled parallel

task execution, and the successful real-world deployment

highlighted the framework’s practical relevance. The study

also identified areas for future work, such as enhancing the

scalability of the planner and further reducing the need for

manual KB validation.

REFERENCES

[1] M. Shanahan, Talking about large language models, 2023. arXiv:
2212.03551 [cs.CL].

https://arxiv.org/abs/2212.03551


3

[2] W. X. Zhao et al., A survey of large language models, 2023. arXiv:
2303.18223 [cs.CL].

[3] T. C. Son et al., “Planning for multiagent using asp-prolog,” in Inter-

national Workshop on Computational Logic in Multi-Agent Systems,
Springer, 2009, pp. 1–21.

[4] B. Li et al., Interactive task planning with language models, 2023.
arXiv: 2310.10645 [cs.RO].

[5] J. Zapf et al., “Constructing behaviour trees from pddl temporal
plans,” Tech. Rep., 2023.

[6] E. Saccon et al., “A temporal planning framework for multi-agent
systems via llm-aided knowledge base management,” Robotics and

Autonomous Systems, Submitted, 2025.
[7] X. Huang et al., Fewer is more: Boosting llm reasoning with reinforced

context pruning, 2024. arXiv: 2312.08901 [cs.CL].
[8] J. Wei et al., “Chain of thought prompting elicits reasoning in large

language models,” in Advances in Neural Information Processing

Systems, A. H. Oh et al., Eds., 2022.

https://arxiv.org/abs/2303.18223
https://arxiv.org/abs/2310.10645
https://arxiv.org/abs/2312.08901

	Introduction
	PLANTOR Framework
	Example Application and Conclusion

