
IROS 2024

A Sampling Ensemble for Asymptotically Complete Motion Planning

with Volume-Reducing Workspace Constraints

Sihui Li∗ Matthew A. Schack∗ Aakriti Upadhyay Neil T. Dantam

Abstract— Many robot tasks impose constraints on the
workspace. For example, a robot may need to move a container
without spilling its contents or open a door following the
doorknob’s arc. Such constraints may induce narrow vol-
umes in the configuration space, traditionally a challenge for
sampling-based methods, and further cause infeasibility. We
extend sample-driven connectivity learning (SDCL), a robust
approach for planning with narrow passages, to develop a
sampling ensemble for workspace constraints. In particular,
the ensemble combines SDCL, projection via dual quaternion
optimization, and random sampling. These complementary
sampling approaches support efficient and robust planning
under workspace constraints. Further, this framework offers the
ability to determine infeasibility under workspace constraints,
which is unaddressed by previous constrained planning methods.

I. INTRODUCTION

Many robot tasks require motion that not only avoids

collision but also satisfies certain workspace constraints. For

example, a robot moving a liquid-filled cup must keep it

upright (see Figure 1), while a robot operating a door must

follow paths constrained by the door’s handle and hinges.

Such constraints limit the valid robot poses and consequently

limit the portion of the configuration space containing

valid plans. Some prior approaches viewed constraints as

manifolds in the configuration space [1], [2]; during planning,

these approaches project configurations onto the manifold

to produce valid plans. In this work, we consider volume-

reducing constraints representing sub-regions of the free

region of the configuration space. Some tasks inherently do

not require strict manifold constraints. For example, holding

a cup sufficiently upright to avoid spilling does not typically

require perfect vertical alignment. Even tasks that seem to

impose manifold constraints, such as opening a door or

drawer, could be reframed as volume-reducing constraints

based on flexibility in the arm through an adaptive control

layer [3] or compliant hardware system [4]. Thus, volume-

reducing constraints support a variety of useful robot tasks.

Volume-reducing constraint decrease the acceptable region

in the configuration space, potentially creating more narrow

passages and increasing planning difficulty due to small

volumes and low sampling probabilities. To resolve this

planning challenge, we adapt Sample-Driven Connectivity

The authors are with the Department of Computer Science,
Colorado School of Mines, Golden, CO, USA. Email:
{li,mschack,aakriti.upadhyay,ndantam}@mines.edu.
This work was supported in part by the ARL TBAM-CRP [W911NF-
22-2-0235], ARL DCIST CRA [W911NF-17-2-0181, and Office of Naval
Research grant N00014-21-1-2418.

∗ contributed equally.

¹

Fig. 1: A volume-reducing workspace constraint. The robot

must transport the container while holding it sufficiently

upright (within ¹) to prevent spilling. Constrained motion

within a confined area presents challenges for planning due

to narrow passages and possible infeasibility.

Learning (SDCL) [5], which learns connectivity in the

configuration space to generate narrow passage samples, to

now address volume-reducing constraints. The degenerate

case of narrow passages occurs when obstacles and constraints

create an infinitesimal (zero-volume) passage and consequent

infeasibility of planning. To decide whether a plan exists or

not with constraints, we need to construct infeasibility proofs.

We address narrow passages and possible infeasibilities

through an asymptotically complete planing approach, which

returns a plan or an infeasibility proof in the limit [6].

We develop an asymptotically complete algorithm for mo-

tion planning with volume-reducing constraints and demon-

strate the algorithm’s effectiveness. First, we generally view

volume reducing constraints as restrictions on the free space

(see Sec. III), which supports use of blackbox validity check-

ing typical of sampling-based planners [7], [8]. Second, we

adapt the framework of SDCL (see Sec. IV), which supports

efficient planning through narrow passages [5]. Third, we

develop an approach to project sampled configurations into

the constraint region (see Sec. V-B), which more efficiently

satisfies constraints compared to uniform sampling. Fourth,

we analyze this formulation and approach to show that it is

asymptotically complete Sec. V-C. Finally, we evaluate this

work in several robot manipulation scenarios (see Sec. VI).

A key step in our approach is the projection of con-

figurations into the constraint region. We formulate this

projection as a nonlinear program to find valid configurations.

We begin from a sampled configuration that is invalid

(constraint-violating) and then apply local, gradient-based

methods to ensure the workspace constraint is satisfied.

1 of 8

IROS 2024

This projection improves our ability to sample constraint-

satisfying configurations compared to uniform sampling alone,

especially for low-volume constraint regions.

We perform experiments in scenes using robots with 5-8

degrees of freedom (DOF) and workspace constraints repre-

senting holding a container upright, keeping the end-effector

within a camera’s field of view, and moving along a Cartesian

plane while adhering to end-effector pose constraints. We

compare our approach against baseline planners in OMPL [9],

demonstrating improved time and robustness for difficult

(narrow passage) scenes and the capability to determine

infeasiblity when no plan exists.

II. RELATED WORK

Sampling-based motion planners, such as probabilistic

roadmaps (PRM) [7] and rapidly exploring random trees

(RRT) [10], are effective and widely-used approaches. Gen-

erally, such planners sample robot configurations and grow a

tree or graph towards the sample. However, challenges may

arise when applying these methods to problems with small

volumes (narrow passages) in the configuration space—which

may be exacerbated by further constraints on the motion—

due to low probability of sampling in, or connecting through,

the small volumes. We address this challenge by developing a

new sampler based on our SDCL algorithm [5], coupled with

a projection approach, to generate samples in the low-volume

regions.

A. Narrow Passages & Guided Sampling

When the configuration space contains narrow passages,

uniform random sampling has low probability of generating

the necessary configurations to find valid plans, so guided

sampling approaches are often used. Bridge test sampling [11]

increases the sampling density in narrow passages based on

local information around the configurations. Some previous

works used topological methods to guide sampling [12], [13]

closer to objects or in narrow passages. KPIECE [14] uses

multi-level grids in the search space to guide sampling in

less explored areas. Visibility [15] and sparsity [16]-based

algorithms guide sampling using the coverage information of

the free space. Other approaches try to learn from previous

samples to guide current sampling [17]–[21].

In this work, we adapt a guided sampling-based approach

based on SDCL [5] to find plans through the narrow passages

induced by volume-reducing constraints. Prior results showed

that SDCL offers robust performance for planning through

narrow passages in unconstrained manipulation problems,

and the structures produced by SDCL effectively integrate

with infeasibility proofs to offer asymptotic completeness.

We now generalize SDCL as a planner-independent sampling

strategy and couple it with projections to guide sampling into

constraint regions.

B. Constrained Motion Planning

Constrained motion planning places certain limitations on

a robot’s motion. Constraints can model range of systems

and are used for parallel robots [22], [23], grasping and

manipulation [24], [25], computational biology and molecular

simulations [26], [27], and animation [28], [29]. For example,

we may specify constraints that a grasped container is held

upright to avoid spilling or that an end-effector maintains

contact with a surface such as for cleaning or painting.

Several forms of constraints are used for motion planning.

In this work, we focus on volume-reducing constraints,

represented as inequalities or intervals that limit valid volumes

of the configuration space. Related to volume-reducing

constraints are soft constraints [30]–[32], which also permit

a volume of feasible values while favoring some particular

value, e.g., filling a water pitcher under a faucet where closer

to alignment to vertical allows the pitcher to hold more

water. While our current work does not directly address soft

constraints, such favored values could be incorporated into

our projection approach. Other constraints may create lower

dimension manifolds within the configuration space [1], [33],

[34]. While some techniques in this current work could apply

to such manifold constraints, analysis of infeasibility and

asymptotically complete motion planning for lower dimension

manifolds remains an area of future work.

Sampling-based methods must address constraint satis-

faction for two operations: sampling configurations and

connecting configurations; Kingston et. al. [2] classify five

techniques to support constraints: relaxation [35]–[37], pro-

jection [1], [30], [33], [38], tangent-space sampling [33],

[39], [40], incremental atlas construction [41]–[43], and

reparameterization [44], [45]. In this work, we take a

projection approach, which is similar to several previous

works. Yao and Gupta applied projections to general end-

effector constraints [46]. Task-constrained RRT [33], [39] and

Constrained Bi-directional RRT (CBiRRT) [1], [47] address

constraints via gradient descent based on the manipulator

Jacobian pseudo-inverse. Similarly, Kunz and Stilman [30]

address soft constraints via gradient descent projection. [38]

constrains grasps, approach directions, and object transport

paths by defining a planning margin based on grasp quality

and success and finding solutions using Nelder-Mead and

Jacobian pseudoinverse methods. Implicit manifold configu-

ration spaces (IMACS) [34] define an implicit configuration

space based on manifold constraints and incorporate projec-

tion onto the manifold. Our work now applies dual quaternion

analysis [48] to formulate projection as a nonlinear program,

supporting general workspace constraints, composition of

multiple constraints, and the use of highly-engineered, robust,

and efficient solution techniques [49]–[52].

C. Infeasibility

Some previous works construct exact path non-existence

guarantees for single, rigid objects in a 2D or 3D

workspace [53], [54]. Others [55], [56] use computational ge-

ometry tools to construct separations in the obstacle regions of

the configuration space. Deterministic sampling-based motion

planning also guarantees plan non-existence to some extent

if no plans are found with the sampling coverage [57]–[60].

Previous works have also applied learning-based methods to

2 of 8

IROS 2024

predict infeasible plans [61]–[63]. However, these methods

do not provide definitive plan nonexistence guarantees.

In our previous work [64], [65], we proposed a sampling

and learning-based infeasibility proof construction algorithm.

The algorithm uses sampled configurations to learn a manifold

in the configuration space and try to form a closure in the

obstacle region to prove plan infeasibility. We apply this

algorithm to motion planning problems with volume-reducing

constraints to show infeasibility in some scenes.

III. PROBLEM DEFINITION

We address motion planning with volume reducing con-

straints. We first state the definition of unconstrained motion

planning. Then, we incorporate volume reducing constraints.

An unconstrained motion planning problem [66] consists of

a configuration space C of dimension n, a start configuration

qstart, and a goal configuration qgoal. The configuration space

C is the union of the disjoint obstacle region Cobs and free

space Cfree. Both qstart and qgoal are in Cfree. Typically,

sampling-based motion planners [9] implicitly define Cobs
and free space Cfree via blackbox collision checkers (such as

[67]) that test whether a specific configuration is in Cobs or

Cfree. The output of motion planning is plan Ã through free

space such that Ã[0, 1] ∈ Cfree, Ã[0] = qstart, Ã[1] = qgoal.

We consider volume reducing constraints of the form,

Gi (q) f εi, i = 1, . . . , n , (1)

where each Gi : C 7→ R is a scalar function and εi
defines the volume in which this constraint is satisfied. For

example, the constraint to hold a container upright within

tolerance ε would be |ln h(q)| f ε, where h is the rotation

quaternion of the container relative to upright as a function

of configuration q and which we determine from the robot’s

forward kinematics. Configurations satisfying constraints are

Cin = {q ∈ C | Gi (q) f εi, ∀i = 1, . . . , n}. Configurations

violating constraints are Cout = C \ Cin. While we might

consider constraints similarly to the implicitly defined obstacle

region based on blackbox validity checking, it is useful to

explicitly define constraints of the form in (1) to support the

projections described in Sec. V-B.

A constrained motion planning problem consists of an

unconstrained motion planning problem, coupled with a set

of constraints G1, . . . ,Gn of the form in (1). To achieve

asymptotic completeness, our probability of terminating with

a plan or infeasibility proof must approach one in the limit [6].

That is, when a plan exists, the output is a plan Ã such that

Ã[0, 1] ∈ Cfree ∩Cin, Ã[0] = qstart, Ã[1] = qgoal. When there

is no feasible plan, the output is an infeasibility proof M
consisting of a closed manifold lying entirely in Cobs ∪ Cout
and separating qstart and qgoal.

IV. BACKGROUND

We briefly summarize key details of SDCL [5] and

asymptotically complete motion planning [64], [65] on which

this current work is based.

A. Sample-Driven Connectivity Learning (SDCL)

SDCL integrates sampling-based planning and machine

learning to effectively produce samples in narrow pas-

sages [5]. There are two main steps in SDCL: learning a

manifold and sampling the manifold. In the learning step,

SDCL uses samples in the configuration space as training

data for a classifier. All samples in the qgoal component are

one class, and all other samples are the other class. The

result of learning is a configuration space manifold M(q)
(q ∈ C) that separates the configuration space into two parts.

This learning process encodes in the manifold connectivity

information from the samples of the configuration space. Next,

SDCL samples points on the manifold. Sampled manifold

points in Cfree offer potential connections between the goal

and non-goal components, effective to find plans through

narrow passage.

B. Infeasibility Proof and Asymptotically Complete

An infeasibility proof is a closed manifold in C that is

entirely in Cobs and that separates qstart and qgoal [64], [65].

Such a manifold shows that no path connecting qstart and

qgoal is collision-free, so we can conclude with a path non-

existence guarantee. The infeasibility proof algorithm uses the

same learned manifold M as SDCL and checks whether this

manifold forms an infeasibility proof. Checking the manifold

takes two steps. First, we triangulate the manifold into a

piece-wise linear approximating polytope. Second, we check

if each facet of the polytope is entirely in Cobs.
Completeness is an important property for motion planners.

A complete planner returns a plan or reports plans non-

existence in finite time. Many sampling-based motion planners

are probabilistically complete [7], [8], meaning they find a

plan in the limit for feasible cases. In infeasibility proof

construction, as more points are sampled in Cfree, the learned

manifold is guaranteed to converge to an infeasibility proof

if no plan exists [6]. Combining a probabilistically complete

sampling-based algorithm with infeasibility proof construction

offers asymptotic completeness [6], meaning the planner finds

either a plan or infeasibility proof in the limit.

V. ALGORITHM

In this work, we adapt SDCL and infeasibility proof con-

struction to address volume-reducing workspace constraints.

The result is an asymptotically complete motion planner

supporting workspace constraints.

The key feature is a complementary ensemble of samplers

to efficiently find valid points that satisfy constraints, i.e.,

in Cfree ∩ Cin. Uniform random sampling of configurations

would have low probability of sampling narrow regions of

Cfree∩Cin. Instead, we combine multiple sampling strategies to

robustly find valid configurations. First, one thread samples

narrow passage points similarly to SDCL (see Sec. V-A

and Alg. 1). Second, one thread further projects points

from Cout into Cin (see Sec. V-B and Alg. 2). Third, one

thread performs random sampling (see Alg. 3). When the

planner needs a new sample, we check in turn for samples

produced by each of these threads (see Alg. 4). The SDCL

3 of 8

IROS 2024

sampler robustly finds points through narrow passages.

The projection sampler effectively finds constraint-satisfying

points. The random sampler offers further space coverage

over projections, supporting connectivity learning performed

by SDCL. Together, this ensemble efficiently and robustly

finds useful samples for constrained motion planning.

Additionally, planning under constraints requires valid

(within Cfree ∩ Cin) tree/roadmap edges. Some approaches

verify edges with the local planner [8]. Rather than modifying

the local planner for every distinct motion planner, we instead

adjust the validity checker to test whether a configuration

is simultaneously in Cfree and in Cin. This modification

further ensures that infeasibility proof construction checks

for manifold containment in Cobs ∪ Cout.

A. SDCL Constraint Sampler

In this work, we adapt SDCL to both operate as a sampler

and incorporate volume-reducing constraints. SDCL (see

Alg. 1) operates with any multi-directional sampling-based

motion planner such as a PRM [7]. In Alg. 1, Pgoal are

all graph nodes connectable to qgoal, and Prest are all the

other graph nodes. We learn the manifold M from these two

classes (line 4) and then sample the manifold. SDCL saves

all sampled manifold points in Cfree to a set B (line 7). In

a separate thread, Alg. 2 projects points into the constraint

region. When the sampler (see Alg. 4) is called from a planner,

it checks first for valid points from SDCL’s manifold and

projected points; if no points exist, the sampler falls back to

random sampling.

Algorithm 1: SDCL Sampling Thread

Input: g, Q // Planning graph, All sampled config

Output: B1 // Valid configurations for Alg. 4

1 repeat

2 Pgoal ← all nodes of g connectable to qgoal

3 Prest ← g \ Pgoal // Other nodes

4 M ← Learn(Prest, Pgoal)
5 foreach q ∈ Q do // sample in parallel

6 qm ← SampleManifold(q,M)
7 if qm ∈ Cfree ∩ Cin then B1 ← B1 ∪ {qm}

8 until plan or infeasibility proof found

Algorithm 2: Projection Sampling Thread

Input: G // Constraints

Output: B2 // Valid configurations for Alg. 4

1 repeat // Solve Equation 2

2 r ← RandomSample()

3 s← Solve
from r

(

maxq 0
s.t. Gi (q) f εi ∀i f n

)

4 if s ∈ Cfree ∩ Cin then B2 ← B2 ∪ {s}
5 until plan or infeasibility proof found

Algorithm 3: Random Sampling Thread

Output: B3 // Valid configurations for Alg. 4

1 repeat

2 s← RandomSample()
3 if s ∈ Cfree ∩ Cin then B3 ← B3 ∪ {s}
4 until plan or infeasibility proof found

Algorithm 4: Sample

Input: B1 B2, B3 // Valid configs from samplers

Output: s // A valid sample

1 loop

2 if B1 ̸= ∅ then return pop(B1)
3 else if B2 ̸= ∅ then return pop(B2)
4 else if B3 ̸= ∅ then return pop(B3)
5 else

6 s← RandomSample()
7 if s ∈ Cfree ∩ Cin then return s

B. Projection into Constraint Region

We project sampled points into Cin using a local, gradient-

based method. Specifically, we create a nonlinear program

(NLP) to find points in Cin. The NLP formulation is in-

dependent of the particular optimization algorithm, though

our experiments (see Sec. VI) use a sequential least squares

quadratic programming (SLSQP) approach [49]–[51], which

is a quasi-Newton method that approximates the Hessian

and needs only the gradient. Though numerical methods to

compute gradients are possible, many constraints (including

all in Sec. VI) are expressible analytically as limitations on

the workspace—e.g., holding a container upright limits the

possible orientations of the end effector. Analytic gradients

of such workspace constraints are computable via the chain

rule and manipulator Jacobian (see Sec. V-B.2).

1) Optimization Formulation: We formulate an NLP to

project an input configuration q into constraint region Cin.

We only need valid samples in Cin, so we express the NLP

using constraints G and a constant objective. As a result, we

only apply the projection when the input configuration does

not satisfy the constraints—i.e., q /∈ Cin.

max
q

0 (2)

s.t. Gi (q) f εi ∀i f n

We do require gradients to solve this NLP using SLSQP.

While there is no guarantee that analytic gradients will

exist for arbitrary G, we can often effectively use numerical

approximations (finite difference). Further, analytic gradients

are computable for many workspace constraints.

2) Workspace Constraints: Many robot tasks impose

workspace constraints that limit translation and/or orientation.

We consider a special Euclidean group SE(3) workspace.

Such a constraint Gi is then expressible as,

Gi (q) = Fi

(

0
Sf (q)

)

, (3)

4 of 8

IROS 2024

where 0Sf (q) ∈ SE(3) represents the workspace pose of

coordinate frame f , and Fi : SE(3) 7→ R is a workspace

constraint on frame f . The chain rule reduces the gradient of

Gi to a function of workspace constraint gradient ∇Fi and

manipulator Jacobian J.

∇Gi (q) = ∇Fi

(

0
Sf (q)

)

∗
∂

∂q
0
Sf (q) (4)

= ∇Fi

(

0
Sf (q)

)

∗ J (q)

=
(

J(q)T
(

∇Fi

(

0
Sf (q)

))T
)T

Sec. VI-A describes several specific constraints F .

We note that multiple representations of pose 0Sf and

Jacobian J are possible, based generally on the structure

of SE(3). However, one typical form of the manipulator

Jacobian, relating workspace and configuration space veloci-

ties (i.e.,
[

É v̇
]T

= Jxq̇), is not directly applicable to (4).

Instead, we use dual number quaternions for poses because

we can robustly take their Jacobians [48]. Dual quaternion

pose S is,

S = h +
1

2
v⃗ ¹ hε , (5)

where h is the rotation ordinary quaternion, v⃗ is the translation

vector, and ε is the dual number element (ε2 = 0, ε ̸= 0).

The manipulator Jacobian in dual quaternion form is then,

J =
∂S

∂q
=

1

2
[S]R JΩ (6)

where [S]R is the right matrix form of dual quaternion

multiplication and JΩ is the twist form of the Jacobian (i.e.,
[

É v̇ + v⃗ × É
]T

= JΩq̇) [68]. We refer the reader to [48]

for further details on dual quaternions for robot kinematics.

C. Completeness Analysis

We discuss the requirements for asymptotic completeness

of our algorithm, i.e., that in the limit we find a plan when

one exists or prove infeasibility when no plan exists.

1) ε-goodness for Cfree and Cin: Generally, probabilis-

tic completeness of sampling-based planners requires the

ε-goodness property [69] for Cfree or similar notion of

¶-clearance [8], [70], which means Cfree has a “reasonably

large” volume for the path to exist. ε-goodness and ¶-

clearance pose the same requirements but defined for dif-

ferent components of motion planning; in this paper, we

use ε-goodness since we need to discuss a region of the

configuration space directly.

We require ε-goodness for Cfree ∩ Cin, such that we have

a volume to sample free space and constraint-satisfying

configurations and form a path. In most cases, ε-goodness

for Cfree ∩ Cin means Cin needs to be ε-good, though it is

possible for infinitesimal regions of Cin to be subsumed within

non-infinitesimal regions of Cfree, or vice-versa.

2) ε-blocked for Cobs and Cout: Previously, we introduced

the ε-blocked property for Cobs to guarantee that Cobs has

sufficient “thickness” to support learning the infeasibility

proof [6]. We require the same ε-blocked property for

Cobs ∪ Cout, that is, the union of the region not satisfying the

volume-reducing constraints and the obstacle region cannot be

infinitesimal. For example, we do not consider cases where

Cout is a set of disjoint points in Cfree, such as avoiding

contact with a single hazardous point or avoiding kinematic

singularities.

3) Asymptotic Completeness under volume-reducing con-

straints: With ε-good Cfree ∩ Cin and ε-blocked Cobs ∪ Cout,
our algorithm is asymptotically complete. When a plan exists,

the algorithm finds a plan in the limit, since Cfree ∩ Cin has a

volume we can sample and the SDCL sampler incorporates

random sampling if SDCL and projection are not effective.

When a plan does not exist, samples generated in Cfree ∩ Cin
push the learned manifold into Cobs ∪ Cout to form the

infeasibility proof.

VI. EXPERIMENTS

We evaluate our algorithm in scenes with various volume-

reducing constraints and robots with 5 to 8 DOF (shown

in Figure 2). The constraints differ in how much of the

valid space they remove and whether they restrict the

end effector’s position (Sec. VI-A.1 and Sec. VI-A.2) or

orientation (Sec. VI-A.3). We evaluate our results over 10

trials for each scene and compare the SCDL [5] sampler

and SDCL with projection sampler find the narrow passages

as well as with 7 baseline algorithms from OMPL [9],

RRTConnect [8], PRM [7], LBKPIECE [14], EST [71],

SBL [72], LBTRRT [73], BFMT [74].

We leverage parallelism in several parts of our algorithm

and run our experiment on a multi-core system with NVIDIA

TU102 GPU and a dual CPU AMD EPYC 7402 with

24 cores per CPU. We adapt PRM [75] in OMPL [9]

to work with the SDCL thread. We solve the nonlinear

optimization problems using sequential least-squares quadratic

programming (SLSQP) [50], [51] in NLopt [76]. We train the

RBF-kernel SVM using ThunderSVM [77], which supports

GPU-accelerated SVM training. We check collisions using the

Flexible Collision Library [67]. We model robot kinematics

using Amino [78].

A. Test Scenes and Constraints

We evaluate our approach on four scenes with different

volume-reducing constraints. Three scenes are feasible, and

the final scene is infeasible.

1) Visibility Constraint: The scene in Figure 2a constrains

the robot to keep its end effector within a camera’s Field of

View (FOV) in a kitchen environment.

We represent FOV as an infinitely extended cone with

apex v⃗cone ∈ R
3, center axis represented as a unit vector

caxis ∈ R
3, and viewing angle cθ ∈

[

0, π
2

]

. We determine if

a point lies within the cone’s FOV by comparing the cosines

of viewing angle cθ and the angle between the cone’s axis

and the vector from the cone’s origin to the input point v⃗,

cos (cθ) f Fcone (v⃗) ≜
(v⃗ − v⃗cone) · caxis
|(v⃗ − v⃗cone)|

, (7)

where v⃗ is the end effector’s workspace position. Since Fcone

is independent of orientation, its gradient is based solely the

5 of 8

IROS 2024

Start

Goal

(a) Kitchen Field of View

Start

Goal

(b) Planar Motion

Start

Goal

(c) Upright Shelf

Start
Goal

(d) Infeasible

Fig. 2: Three feasible test scenes and one infeasible scene with different robots and constraints. (a) Fetch must keep its end

effector within the camera’s Field of View. (b) Baxter must move its gripper at a constant height relative to the table. (c)

Franka Panda must keep the cup upright while moving it between shelves. (d) An infeasible scene; Schunk LWA4D must

move the cylinder into the cabinet without tilting beyond a limit.

end effector translation.

∇Fcone =
∂

∂v⃗

(v⃗ − v⃗cone) · caxis
|(v⃗ − v⃗cone)|

(8)

=
caxis

|(v⃗ − v⃗cone)|
−

(v⃗ − v⃗cone) · caxis

|(v⃗ − v⃗cone)|
3/2

(v⃗ − v⃗cone)

2) Planar Constraint: The scene in Figure 2b constrains

a 7 DOF Baxter arm to be a fixed height above a table. We

specify this constraint by requiring the distance between the

end effector’s height, z, and a reference height, zref be less

than some small number ϵplane,

ϵplane g Fplane (z) ≜ |z − zref|
2
. (9)

The gradient of (9) via the chain rule is,

∇Fplane =
∂

∂z
|z − zref|

2
=

z − zref

|z − zref|
2
. (10)

3) Upright Constraint: The scene in Figure 2c constrains

a 7 DOF Franka arm to hold a cup level while moving it

between shelves. We specify this constraint based on relative

rotation angle,

ϵθ g Fup (h) ≜ |ln (h
∗ ¹ href)|

2

xy , (11)

where ϵθ specifies permissible rotation from vertical, h is

the cup orientation quaternion, href is the upright rotation

quaternion, and |(x, y, z)|2xy = x2 + y2. The gradient of (11)

follows from the methods described in [48].

4) Infeasible Scene: Figure 2d contains an infeasible scene

to show that our algorithm generates infeasibility proofs when

plans do not exist. The robot must move a cup from a position

outside of the shelf to a position on the shelf. In this scene,

we use the Schunk LWA4D, fixing the fifth and the last joints

to limit to five DOF. Without upright constraints (11), a plan

exists. With the upright constraint, no plan exists and the

algorithm returns an infeasibility proof. We ran 20 trials, and

all successfully proved infeasibility with a mean runtime of

60.40 s and a standard deviation of 41.20 s.

B. Results

For the upright constraint and the planar constraint scenes,

our algorithm is the fastest and most robust. We set the timeout

to be 100 seconds; in most cases, the baseline motion planners

cannot find a path within the time limit, which means the

actual runtime difference to find paths is larger. These two

scenes show improvement from our approach because the

constraints creates narrow passages in the configuration space,

showing that the projection and SDCL help resolve narrow

passages well. In the FOV constraint scene, our algorithm is

not the fastest, because the FOV constraint covers a whole

region, as is shown in Figure 2a, which does not result in

configuration space narrow passages.

Comparing the SDCL sampler with and without the

projection, in the upright constraint scene, the projection

improves the runtime by 44.9%. The other scenes do not

show obvious differences when running SDCL with and

without the projection. This means it is difficult to sample

the upright constraint region with random sampling.

VII. CONCLUSION

We have presented an ensemble of samplers for robust

planning under workspace constraints. This approach inte-

grates sample-driven connectivity learning for robust planning

through narrow passages, nonlinear programming to sample

constraint-satisfying points, and random sampling to promote

space coverage. In the tested scenes, baseline planners perform

well for an easy scene (without narrow passages), while

our approach offered time and robustness improvements for

difficult scenes (containing narrow passages). Further, this

algorithmic framework offers asymptotic completeness, mean-

ing we can determine when motion planning is infeasible.

There are several possible avenues for future work. First,

while the current work focused on volume-reducing hard

constraints, soft constraints could be directly incorporated

into the projection as an optimization objective within (2).

Second, in our current implementation, infeasibility proofs

are tractable for up to five DOF robots; in ongoing work, we

are developing parallel, accelerated algorithms to scale infea-

sibility proofs to higher DOF. Finally, proving infeasibilities

which are caused by lower dimension manifold constraints

remains an area requiring further work and analysis.

6 of 8

IROS 2024

Algorithm Kitchen (Figure 2a) Upright (Figure 2c) Planar (Figure 2b)

Mean Runtime (s) Completed Means Runtime (s) Completed Mean (s) Completed

ProjectSDCL 21.17 ± 23.59 10 37.03 ± 16.79 10 12.88 ± 3.43 10

SDCL 24.88 ± 21.12 10 67.23 ± 14.01 10 11.38 ± 4.30 10

PRM 34.32 ± 37.57 8 100.08 ± 0.04 0 100.07 ± 0.03 0

LBKPIECE1 3.33 ± 1.51 10 82.80 ± 23.23 4 100.04 ± 0.02 0

LBTRRT 100.14 ± 0.17 0 100.06 ± 0.03 0 100.04 ± 0.02 0

SBL 10.12 ± 3.86 10 100.07 ± 0.03 0 100.05 ± 0.02 0

BFMT 12.96 ± 2.11 10 100.40 ± 0.70 0 100.18 ± 0.18 0

EST 47.18 ± 30.95 9 100.07 ± 0.04 0 100.05 ± 0.03 0

RRTConnect 0.78 ± 0.48 10 100.07 ± 0.03 0 100.05 ± 0.03 0

TABLE I: The runtime and success rate of ProjectSDCL and the baseline methods for the kitchen (Figure 2a), upright

(Figure 2c), and planar (Figure 2b) environments. The planar and upright environments were more constrained than the

kitchen environment, making them more challenging to solve by purely sampling the space. Our work projects sampled

points into the constraint regions, allowing us to more efficiently sample the space leading to faster performance on the more

constrained scenes.

REFERENCES

[1] D. Berenson, S. S. Srinivasa, D. Ferguson, and J. J. Kuffner, “Manipu-
lation planning on constraint manifolds,” in ICRA, 2009, pp. 625–632.

[2] Z. Kingston, M. Moll, and L. E. Kavraki, “Sampling-based methods for
motion planning with constraints,” Annual Review of Control, Robotics,

and Autonomous Systems, vol. 1, no. 1, pp. 159–185, 2018.

[3] C. K. Verginis, D. V. Dimarogonas, and L. E. Kavraki, “Sampling-
based motion planning for uncertain high-dimensional systems via
adaptive control,” in WAFR. Springer, 2021, pp. 159–175.

[4] M. Bonilla, E. Farnioli, L. Pallottino, and A. Bicchi, “Sample-based
motion planning for robot manipulators with closed kinematic chains,”
in ICRA. IEEE, 2015, pp. 2522–2527.

[5] S. Li and N. T. Dantam, “Sample-Driven Connectivity Learning for
Motion Planning in Narrow Passages,” in ICRA. IEEE, 2023, pp.
5681–5687.

[6] ——, “Exponential convergence of infeasibility proofs for kinematic
motion planning,” in WAFR, 2022.

[7] L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. H. Overmars, “Prob-
abilistic roadmaps for path planning in high-dimensional configuration
spaces,” T-RO, vol. 12, no. 4, pp. 566–580, 1996.

[8] J. J. Kuffner and S. M. LaValle, “RRT-connect: An efficient approach
to single-query path planning,” in ICRA, vol. 2, 2000, pp. 995–1001.

[9] I. A. Şucan, M. Moll, and L. E. Kavraki, “The open motion planning
library,” RAM, vol. 19, no. 4, pp. 72–82, 2012.

[10] S. M. LaValle and J. J. Kuffner, “Randomized kinodynamic planning,”
IJRR, vol. 20, no. 5, pp. 378–400, 2001.

[11] D. Hsu, T. Jiang, J. Reif, and Z. Sun, “The bridge test for sampling
narrow passages with probabilistic roadmap planners,” in ICRA, vol. 3.
IEEE, 2003, pp. 4420–4426.

[12] A. Upadhyay, B. Goldfarb, W. Wang, and C. Ekenna, “A new
application of discrete morse theory to optimizing safe motion planning
paths,” in WAFR. Springer, 2023, pp. 18–35.

[13] S. Ruan, K. L. Poblete, H. Wu, Q. Ma, and G. S. Chirikjian,
“Efficient path planning in narrow passages for robots with ellipsoidal
components,” T-RO, 2022.

[14] I. A. Şucan and L. E. Kavraki, “Kinodynamic motion planning by
interior-exterior cell exploration,” in WAFR. Springer, 2009, pp.
449–464.

[15] T. Siméon, J.-P. Laumond, and C. Nissoux, “Visibility-based proba-
bilistic roadmaps for motion planning,” Advanced Robotics, vol. 14,
no. 6, pp. 477–493, 2000.

[16] A. Dobson and K. E. Bekris, “Sparse roadmap spanners for asymptot-
ically near-optimal motion planning,” IJRR, vol. 33, no. 1, pp. 18–47,
2014.

[17] B. Burns and O. Brock, “Single-query motion planning with utility-
guided random trees,” in ICRA. IEEE, 2007, pp. 3307–3312.

[18] ——, “Sampling-based motion planning using predictive models,” in
ICRA. IEEE, 2005, pp. 3120–3125.

[19] S. Dalibard and J.-P. Laumond, “Linear dimensionality reduction in
random motion planning,” IJRR, vol. 30, no. 12, pp. 1461–1476, 2011.

[20] W. Wang, L. Zuo, and X. Xu, “A learning-based multi-RRT approach
for robot path planning in narrow passages,” Journal of Intelligent &

Robotic Systems, vol. 90, no. 1, pp. 81–100, 2018.

[21] B. Ichter, J. Harrison, and M. Pavone, “Learning sampling distributions
for robot motion planning,” in ICRA. IEEE, 2018, pp. 7087–7094.

[22] H.-J. Su and J. M. McCarthy, “Dimensioning a constrained parallel
robot to reach a set of task positions,” in ICRA. IEEE, 2005, pp.
4026–4030.

[23] N. Zhang and W. Shang, “Dynamic trajectory planning of a 3-dof
under-constrained cable-driven parallel robot,” Mechanism and Machine

Theory, vol. 98, pp. 21–35, 2016.

[24] R. Holladay, T. Lozano-Pérez, and A. Rodriguez, “Force-and-motion
constrained planning for tool use,” in IROS. IEEE, 2019, pp. 7409–
7416.

[25] A. M. Zanchettin and P. Rocco, “Motion planning for robotic
manipulators using robust constrained control,” Control Engineering

Practice, vol. 59, pp. 127–136, 2017.

[26] L.-Q. Yang, P. Sang, Y. Tao, Y.-X. Fu, K.-Q. Zhang, Y.-H. Xie,
and S.-Q. Liu, “Protein dynamics and motions in relation to their
functions: several case studies and the underlying mechanisms,” Journal

of Biomolecular Structure and Dynamics, vol. 32, no. 3, pp. 372–393,
2014.

[27] A. Upadhyay, T. Tran, and C. Ekenna, “A topology approach towards
modeling activities and properties on a biomolecular surface,” in 2021

IEEE International Conference on Bioinformatics and Biomedicine

(BIBM). IEEE, 2021, pp. 157–162.

[28] M. Kallmann, A. Aubel, T. Abaci, and D. Thalmann, “Planning
collision-free reaching motions for interactive object manipulation
and grasping,” in ACM SIGGRAPH 2008 classes, 2008, pp. 1–11.

[29] C. Schulz, C. von Tycowicz, H.-P. Seidel, and K. Hildebrandt,
“Animating deformable objects using sparse spacetime constraints,”
ACM Transactions on Graphics (TOG), vol. 33, no. 4, pp. 1–10, 2014.

[30] T. Kunz and M. Stilman, “Manipulation planning with soft task
constraints,” in IROS, 2012, pp. 1937–1942.

[31] N. M. Ceriani, A. M. Zanchettin, P. Rocco, A. Stolt, and A. Robertsson,
“Reactive task adaptation based on hierarchical constraints classification
for safe industrial robots,” IEEE/ASME Transactions on Mechatronics,
vol. 20, no. 6, pp. 2935–2949, 2015.

[32] J. Wang, S. Liu, B. Zhang, and C. Yu, “Manipulation planning with soft
constraints by randomized exploration of the composite configuration
space,” International Journal of Control, Automation and Systems,
vol. 19, no. 3, pp. 1340–1351, 2021.

[33] M. Stilman, “Task constrained motion planning in robot joint space,”
in IROS. IEEE, 2007, pp. 3074–3081.

[34] Z. Kingston, M. Moll, and L. E. Kavraki, “Exploring implicit spaces
for constrained sampling-based planning,” IJRR, vol. 38, no. 10-11,
pp. 1151–1178, 2019.

[35] M. Bonilla, L. Pallottino, and A. Bicchi, “Noninteracting constrained
motion planning and control for robot manipulators,” in ICRA. IEEE,
2017, pp. 4038–4043.

[36] S. Rodriguez, S. Thomas, R. Pearce, and N. M. Amato, “Resampl: A
region-sensitive adaptive motion planner,” in WAFR. Springer, 2008,
pp. 285–300.

[37] J. Bialkowski, M. Otte, and E. Frazzoli, “Free-configuration biased
sampling for motion planning,” in IROS. IEEE, 2013, pp. 1272–1279.

[38] J. Huh, B. Lee, and D. D. Lee, “Constrained sampling-based planning
for grasping and manipulation,” in ICRA. IEEE, 2018, pp. 223–230.

7 of 8

http://dx.doi.org/10.1109/ICRA48891.2023.10161339
http://dx.doi.org/10.1109/ICRA48891.2023.10161339

IROS 2024

[39] M. Stilman, “Global manipulation planning in robot joint space with
task constraints,” T-RO, vol. 26, no. 3, pp. 576–584, 2010.

[40] M. Cefalo, G. Oriolo, and M. Vendittelli, “Task-constrained motion
planning with moving obstacles,” in IROS. IEEE, 2013, pp. 5758–
5763.

[41] B. Kim, T. T. Um, C. Suh, and F. C. Park, “Tangent bundle rrt: A
randomized algorithm for constrained motion planning,” Robotica,
vol. 34, no. 1, pp. 202–225, 2016.

[42] L. Jaillet and J. M. Porta, “Path planning under kinematic constraints by
rapidly exploring manifolds,” T-RO2013, vol. 29, no. 1, pp. 105–117,
2013.

[43] L. Jaillet and J. Porta, “Asymptotically-optimal path planning on
manifolds,” in RSS, Sydney, Australia, July 2012.

[44] T. McMahon, S. Thomas, and N. M. Amato, “Sampling-based
motion planning with reachable volumes for high-degree-of-freedom
manipulators,” IJRR, vol. 37, no. 7, pp. 779–817, 2018.

[45] L. Han, L. Rudolph, J. Blumenthal, and I. Valodzin, “Convexly stratified
deformation spaces and efficient path planning for planar closed chains
with revolute joints,” IJRR, vol. 27, no. 11-12, pp. 1189–1212, 2008.

[46] Z. Yao and K. Gupta, “Path planning with general end-effector
constraints,” Robotics and Autonomous Systems, vol. 55, no. 4, pp.
316–327, 2007.

[47] D. Berenson, S. Srinivasa, and J. Kuffner, “Task space regions: A
framework for pose-constrained manipulation planning,” IJRR, vol. 30,
no. 12, pp. 1435–1460, 2011.

[48] N. T. Dantam, “Robust and efficient forward, differential, and inverse
kinematics using dual quaternions online,” in IJRR. Springer, 2020.

[49] S. G. Johnson, “The NLopt nonlinear-optimization package,” 2024,
http://github.com/stevengj/nlopt.

[50] D. Kraft, “A software package for sequential quadratic programming,”
Institut für Dynamik der Flugsysteme, Oberpfaffenhofen, Tech. Rep.
DFVLR-FB 88-28, July 1988.

[51] ——, “Algorithm 733: TOMP–fortran modules for optimal control
calculations,” Transactions on Mathematical Software (TOMS), vol. 20,
no. 3, pp. 262–281, 1994.

[52] S. Agarwal, K. Mierle, and T. C. S. Team, “Ceres Solver,” 10 2023.
[Online]. Available: https://github.com/ceres-solver/ceres-solver

[53] A. Varava, J. F. Carvalho, F. T. Pokorny, and D. Kragic, “Caging
and path non-existence: a deterministic sampling-based verification
algorithm,” in IJRR. Springer, 2020, pp. 589–604.

[54] J. Basch, L. J. Guibas, D. Hsu, and A. T. Nguyen, “Disconnection
proofs for motion planning,” in ICRA, 2001.

[55] Z. McCarthy, T. Bretl, and S. Hutchinson, “Proving path non-existence
using sampling and alpha shapes,” in ICRA. IEEE, 2012, pp. 2563–
2569.

[56] S. Li and N. T. Dantam, “Towards general infeasibility proofs in motion
planning,” in IROS, 2020, pp. 6704–6710.

[57] M. S. Branicky, S. M. LaValle, K. Olson, and L. Yang, “Quasi-
randomized path planning,” in ICRA, vol. 2. IEEE, 2001, pp. 1481–
1487.

[58] L. Janson, B. Ichter, and M. Pavone, “Deterministic sampling-based

motion planning: Optimality, complexity, and performance,” IJRR,
vol. 37, no. 1, pp. 46–61, 2018.

[59] M. Tsao, K. Solovey, and M. Pavone, “Sample complexity of proba-
bilistic roadmaps via ε-nets,” in ICRA. IEEE, 2020, pp. 2196–2202.

[60] D. Dayan, K. Solovey, M. Pavone, and D. Halperin, “Near-optimal
multi-robot motion planning with finite sampling,” T-RO, 2023.

[61] A. Wells, N. T. Dantam, A. Shrivastava, and L. E. Kavraki, “Learning
feasibility for task and motion planning in tabletop environments,”
RAM, vol. 4, no. 2, pp. 1255–1262, 2019.

[62] D. Driess, O. Oguz, J.-S. Ha, and M. Toussaint, “Deep visual heuristics:
Learning feasibility of mixed-integer programs for manipulation
planning,” in ICRA, 2020, pp. 9563–9569.

[63] D. Driess, J.-S. Ha, R. Tedrake, and M. Toussaint, “Learning geometric
reasoning and control for long-horizon tasks from visual input,” in
ICRA, 2021, pp. 14 298–14 305.

[64] S. Li and N. T. Dantam, “A Sampling and Learning Framework to
Prove Motion Planning Infeasibility,” IJRR, 2023.

[65] ——, “Scaling Infeasibility Proofs via Concurrent, Codimension-one,
Locally-updated Coxeter Triangulation,” RA-L, 2023.

[66] S. M. LaValle, Planning algorithms. Cambridge university press,
2006.

[67] J. Pan, S. Chitta, and D. Manocha, “FCL: A general purpose library
for collision and proximity queries,” in ICRA, 2012, pp. 3859–3866.

[68] K. M. Lynch and F. C. Park, Modern Robotics: Mechanics, Planning,

and Control. Cambridge University Press, 2017.

[69] L. E. Kavraki, J.-C. Latombe, R. Motwani, and P. Raghavan, “Ran-
domized query processing in robot path planning,” JCSS, vol. 57, no. 1,
pp. 50–60, 1998.

[70] S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal
motion planning,” IJRR, vol. 30, no. 7, pp. 846–894, 2011.

[71] D. Hsu, J.-C. Latombe, and R. Motwani, “Path planning in expansive
configuration spaces,” in ICRA, vol. 3. IEEE, 1997, pp. 2719–2726.

[72] G. Sánchez and J.-C. Latombe, “A single-query bi-directional prob-
abilistic roadmap planner with lazy collision checking,” in Robotics

research. Springer, 2003, pp. 403–417.

[73] O. Salzman and D. Halperin, “Asymptotically near-optimal rrt for fast,
high-quality motion planning,” T-RO, vol. 32, no. 3, pp. 473–483,
2016.

[74] J. A. Starek, J. V. Gomez, E. Schmerling, L. Janson, L. Moreno, and
M. Pavone, “An asymptotically-optimal sampling-based algorithm for
bi-directional motion planning,” in IROS. IEEE, 2015, pp. 2072–2078.

[75] L. E. Kavraki, P. Švestka, J. C. Latombe, and M. H. Overmars, “Prob-
abilistic roadmaps for path planning in high-dimensional configuration
spaces,” vol. 12, no. 4, pp. 566–580, August 1996.

[76] S. G. Johnson and J. Schueller, “Nlopt: Nonlinear optimization library,”
Astrophysics Source Code Library, pp. ascl–2111, 2021.

[77] Z. Wen, J. Shi, Q. Li, B. He, and J. Chen, “ThunderSVM: A fast SVM
library on GPUs and CPUs,” Journal of Machine Learning Research,
vol. 19, pp. 797–801, 2018.

[78] N. T. Dantam, “Robust and efficient forward, differential, and inverse
kinematics using dual quaternions,” IJRR, 2020.

8 of 8

http://github.com/stevengj/nlopt
https://github.com/ceres-solver/ceres-solver
http://dx.doi.org/10.1177/02783649231154674
http://dx.doi.org/10.1177/02783649231154674
http://dx.doi.org/10.1109/LRA.2023.3327655
http://dx.doi.org/10.1109/LRA.2023.3327655

	I Introduction
	II Related Work
	II-A Narrow Passages & Guided Sampling
	II-B Constrained Motion Planning
	II-C Infeasibility

	III Problem Definition
	IV Background
	IV-A Sample-Driven Connectivity Learning (SDCL)
	IV-B Infeasibility Proof and Asymptotically Complete

	V Algorithm
	V-A SDCL Constraint Sampler
	V-B Projection into Constraint Region
	V-B.1 Optimization Formulation
	V-B.2 Workspace Constraints

	V-C Completeness Analysis
	V-C.1 -goodness for Cfree and Cin
	V-C.2 -blocked for Cobs and Cout
	V-C.3 Asymptotic Completeness under volume-reducing constraints

	VI Experiments
	VI-A Test Scenes and Constraints
	VI-A.1 Visibility Constraint
	VI-A.2 Planar Constraint
	VI-A.3 Upright Constraint
	VI-A.4 Infeasible Scene

	VI-B Results
	VII Conclusion
	References

