
Scheduling for Cyber-Physical Systems with Heterogeneous
Processing Units under Real-World Constraints

Justin McGowen
Colorado School of Mines

Golden, CO, USA
jmcgowen@mines.edu

Ismet Dagli
Colorado School of Mines

Golden, CO, USA
ismetdagli@mines.edu

Neil T. Dantam
Colorado School of Mines

Golden, CO, USA
ndantam@mines.edu

Mehmet E. Belviranli
Colorado School of Mines

Golden, CO, USA
belviranli@mines.edu

ABSTRACT
Cyber-physical systems (CPS) such as robots and self-driving cars
pose strict physical requirements to avoid failure. The scheduling
choices impact these requirements. This presents a challenge: How
do we find efficient schedules for CPS with heterogeneous process-
ing units, such that the schedules are resource-bounded to meet
the physical requirements? For example, tasks that require signif-
icant computation time in a self-driving car can delay reaction,
decreasing available braking time. Heterogeneous computing sys-
tems — containing CPUs, GPUs, and other types of domain-specific
accelerators — offer effective capabilities to reduce computation
time or energy consumption and expand such operating conditions.
However, doing so under physical requirements presents several
challenges that existing scheduling solutions fail to address.

We propose the creation of a structured system, the Constrained
Autonomous Workload Scheduler (CAuWS). This structured and
system-agnostic approach determines scheduling decisions with
direct relations to the environment and differs from current ad hoc
approaches which either lack heterogeneity, system generality, or
this consideration of the physical world. By using a representa-
tion language (AuWL), timed Petri nets, and mixed-integer linear
programming, CAuWS offers novel capabilities to represent and
schedule many types of CPS workloads, real-world constraints, and
optimization criteria, creating optimal assignment of heterogeneous
processing units to tasks. We demonstrate the utility of CAuWS
with a drone simulation under multiple physical constraints. The
autonomous computation for the drone is made up of commonly
used workloads (i.e., SLAM, and vision networks) and is run on a
popular heterogeneous system-on-chip, NVIDIA Xavier AGX.

CCS CONCEPTS
• Computer systems organization→ System on a chip; Het-
erogeneous (hybrid) systems; • Theory of computation →
Parallel computing models.

KEYWORDS
Heterogeneous computing, cyber-physical systems, physical con-
straints, parallel computing, system-on-chip

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ICS ’24, June 04–07, 2024, Kyoto, Japan
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0610-3/24/06
https://doi.org/10.1145/3650200.3656625

ACM Reference Format:
Justin McGowen, Ismet Dagli, Neil T. Dantam, and Mehmet E. Belviranli.
2024. Scheduling for Cyber-Physical Systems with Heterogeneous Process-
ing Units under Real-World Constraints. In Proceedings of the 38th ACM
International Conference on Supercomputing (ICS ’24), June 04–07, 2024, Kyoto,
Japan. ACM, New York, NY, USA, 14 pages. https://doi.org/10.1145/3650200.
3656625

1 INTRODUCTION
Embedded heterogeneous computing systems offer improved la-
tency and energy use in Cyber-Physical Systems (CPS), but to do
so under the physical requirements of a CPS requires a way to si-
multaneously consider both different processor types and physical
requirements. CPS has two factors that fundamentally limit the
ability to handle these requirements. The first factor is physical
— e.g., braking distance, or battery charge. The other limiting fac-
tor is computational — i.e., moving and processing data to make a
decision takes time and energy. Many recent CPS embed powerful
heterogeneous system-on-chips (SoC), such as NVIDIA’s Xavier
and Orin [20] or Tesla’s FSDj platform [49], which can improve
these computational limits.

A key property of these SoCs is that they employ a variety of
processing units (PUs): often a general-purpose CPU and various,
specialized domain-specific accelerators (DSAs). Many autonomous
systems use DSAs for critical computations, such as object de-
tection or tracking, or other matrix operations. For example, the
Xavier platform embeds a high-throughput graphical processing
unit (GPU), energy-efficient deep learning accelerators (DLA), and
programmable vision accelerators (PVA). While the GPU can run
object detection, tracking algorithms, and other vision tasks with
minimal latency and high throughput, the DLA runs the neural net-
works (NN) used for state-of-the-art object detection with half the
energy of the GPU, at the expense of a higher latency [12, 13, 38].

Autonomous systems place multiple requirements on resource
use. Systems with time-critical components or strict constraints on
energy or power place upper bounds on resource use for any PU
(i.e., CPUs or DSAs); if computation takes more time, energy, etc.,
such a system might fail. For example, an aerial drone may fly at
50 mph, when — considering the true computation time — it only
has enough time to react if flying at 40 mph. Such requirements
may pose a variety of constraints and objectives to optimize, such
as, minimizing power while maintaining safety, flying as fast as
safely possible, or minimizing latency. In some scenarios, multiple
requirements (e.g., minimizing time and energy) may result in a
multi-objective optimization problem [35]. Optimal schedules must
not only satisfy the physical constraints through assignments that
execute tasks on alternate PUs, but must also try to optimize these
objectives. Finding the optimal task schedule under such trade-offs

298

https://doi.org/10.1145/3650200.3656625
https://doi.org/10.1145/3650200.3656625
https://doi.org/10.1145/3650200.3656625
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3650200.3656625&domain=pdf&date_stamp=2024-06-03

ICS ’24, June 04–07, 2024, Kyoto, Japan Justin McGowen, Ismet Dagli, Neil T. Dantam, and Mehmet E. Belviranli

is non-trivial. The scheduling problem is NP-Complete even for
single CPU systems with objectives. This challenge is exacerbated
on heterogeneous architectures due to the high number of DSAs
with diverse characteristics.

This paper addresses the challenge of accounting for physical
constraints while scheduling computational workloads in heteroge-
neous architectures that embed different types of DSA. In particular,
we overcome three limitations of existing approaches:
• State-of-the-art computational workflow modeling techniques
for heterogeneous architectures [5, 10, 33, 41, 43, 46, 48, 54] do
not address the relationship between the physical dynamics of au-
tonomous systems and the parallel and diverse capabilities of het-
erogeneous hardware.

• The traditional real-time abstractions of fixed deadlines, process/-
task priorities, and priority inheritance in current autonomous
systems not only present challenges for achieving precise tim-
ing [31], but such abstractions are wholly insufficient to express the
varying performance and energy characteristics of different types
of PUs in heterogeneous architectures and not capable of satisfying
longer term timing requirements when run on these systems.

• Studies that map physical constraints to hardware decisions are
ad hoc and often limited to specific constraints, optimization
criteria, or architectures [25, 29]. Additionally, these works rep-
resent computation as a single task, neglecting the heterogeneity
necessary for optimal execution.
In general, the literature lacks a generalized methodology to repre-

sent the relationship between physical and computational constraints
and to derive schedules that optimize the desired objectives of CPS
with heterogeneous processing units.

In this study, we propose CAuWS, the Constraint-based Autono-
mous Workload Scheduling for CPS with embedded heterogeneous
processing units, which enables a generalized solution to the het-
erogeneous (i.e., multi-DSA) scheduling problem that accounts for
the physical constraints. To achieve this, our approach takes advan-
tage of a novel representative language (AuWL), timed Petri nets,
and mixed-integer linear programming. CAuWS, whose high-level
operation is illustrated in Figure 1, is able to assign operations from
a wide variety of workloads to PUs on heterogeneous architectures,
creating a static schedule for resource-constrained and time-critical
systems1. These schedules are optimal with respect to the user-
defined objectives (including time) and profiled executions, and the
schedules maintain the constraints defined in AuWL, as computa-
tion can impact time, power, or other factors limited by the physical
requirements. CAuWS generates constraints from a problem defini-
tion, and we leverage the efficiency of highly-engineered constraint
solvers, e.g., [6, 17], to both optimally solve this NP-Complete prob-
lem and offer extensibility to add further constraints.
This paper makes the following contributions:
• To generally bridge between diverse hardware specifications,
computation scheduling constraints, and physical concerns, we
propose a formal representation that consolidates physical con-
straints, heterogeneous computational resources, and latency.
We propose a timed Petri nets based representation for data flow,
parallelism, and resource consumption.

1For further discussion on why static scheduling is feasible vs. dynamic scheduling
for the class of problems this work tackles, please refer to Section 5.

Control
Flow Graph

Schedule
Criteria

HW Spec.
/ Profiling

A
uW

L Augmented
Petri Net

Linear
Constraints

Heterogeneous
Schedule

4.2
4.3 SMT/MILP

Solver

4.1

4.4

Input Scheduling Output

Figure 1: Overview of CAuWS.

• By having a formal intermediate representation, we expose rele-
vant resources and timings such that we can automatically gen-
erate constraints for both computation and physical operation.
With this, we combine optimal computational schedule gener-
ation and physical system concerns — such as safety, speed, or
energy trade-offs — into one optimization problem with multiple
constraints and objectives. Then, we leverage existing highly
engineered constraint solvers for mixed-integer linear program-
ming (MILP) [6, 17, 24] to find a globally optimal schedule.

• We define the Autonomous Workload Language (AuWL) as a
front-end to our intermediate representation. AuWL specifies
both data-flow and physical constraints, hence allowing rapid
specification and high level consideration of a variety of au-
tonomous problems. Other specification languages exist, but
this specific application is novel compared to past languages,
which either do not consider physical constraints or are limited
to hardware-software co-design (and not scheduling).

• We evaluate our approach on a simulated aerial drone. CAuWS
produces a set of three schedules that allow the system to adapt
to the varying physical conditions of the simulation. These sched-
ules obey the physical constraints; in contrast, other scheduling
approaches that do not consider such constraints violate physical
limits for 25% of the flight and would lead to system failure.

2 RELATEDWORK
Scheduling for systems with heterogeneous PUs has been widely
investigated over the last decade. A vast majority of key stud-
ies [3, 4, 8, 11, 32, 36, 53] are dynamic and typically use task-based
heuristics. Static scheduling [1, 13, 23, 27, 45] is also common, with
an emphasis on polyhedral code generation [2, 51] and genetic algo-
rithms [15]. Our proposed approach differs significantly from these
studies in its ability to map the physical dynamics of the system
to the performance characteristics of heterogeneous computing.

A limited number of studies structurally approach timing in CPS
computation by building models relating physical constraints and
computational elements. For example, Krishnan et al. [29] create
a computational model to map processing power to the weight of
a CPS, and Wan et al. [52] focus on the computational resilience
of navigation systems. However, approaches proposed by these
studies are restricted to a specific physical constraint and do not
address general, domain-independent criteria. Alternatively, a few
works have investigated integrating physical constraints into mo-
tion planning, such as balancing the energy between computation
and movement [7, 47]. Most recently, Hadid et al. [25] introduced a
design-space methodology to explore the effects of a wide range

299

Scheduling for Cyber-Physical Systems with Heterogeneous Processing Units under Real-World Constraints ICS ’24, June 04–07, 2024, Kyoto, Japan

of physical factors on compute scheduling; however, this work
also does not provide a generalized technique for CPS scheduling
problems.

Petri nets are a form of directed graph that offers a convenient
representation of dependencies, parallelism, and resources. A lim-
ited number of studies considered Petri nets for CPU-based, formal
scheduling representations for real-time [30, 40, 55] and hybrid [19]
systems. Relevant to this paper are works that establish timed Petri
nets [22], use these to represent embedded systems [37], and utilize
Petri nets for scheduling [40]. Studies [37] involving embedded
systems used Petri nets for verification purposes. While Petri nets
have been used for scheduling on single core CPUs [50], they have
not been used for scheduling of diversely heterogeneous systems yet,
to the best of our knowledge. Our proposed framework uniquely
extends timed Petri nets to specify complex scheduling constraints
introduced by heterogeneous PUs.

Constraint solving is a widely used technique in a number of
fields, including automated planning [26], robotics [14], and pro-
gram verification and synthesis [18]. Specifically, modern and highly
engineered constraint solvers offer a variety of techniques to ef-
ficiently address computationally hard problems [6, 17]. Previous
scheduling techniques have also used constraint solving in an ad
hoc manner. Additionally, many works using Petri nets have also
applied constraint solving.

3 PETRI NETS FOR HETEROGENEOUS
SCHEDULING

This section reviews key details of Petri nets and the extensions
that we use to formally represent heterogeneous scheduling2.

A Petri net is a directed, bipartite graph.

Definition 1. A Petri net is the tuple N = (𝑃, 𝑇 , 𝐸), where,
• 𝑃 is the finite set of place nodes,
• 𝑇 is the finite set of transition nodes,
• 𝐸 ⊆ (𝑃 ×𝑇 ∪𝑇 × 𝑃) are the edges between places and transitions.

Each place 𝑃 may contain a number of tokens. We call the number
of tokens contained in all places a configuration or marking of the
Petri net. When a particular transition fires, it changes the marking
by decrementing the tokens at incoming places and incrementing
tokens at outgoing places.

Petri nets are often a convenient model to represent shared
resources in parallel systems. Places represent a particular resource,
and the token count at a place represents howmuch of that resource
is available. In our scheduling application, we use places to represent
the availability of a PU. Transitions specify the possible changes in
resources. The incoming places to a transition represent resources
that are acquired or consumed, and the outgoing places represent
resources that are released or produced. The Petri net captures the
parallelism of multi-processor systems by allowing transitions to
fire in any order, as long as their incoming places have positive
token counts.

Our scheduling approach uses a mixed-integer extension to clas-
sic Petri nets.While classic Petri nets are discrete, many real systems
have continuous resources, such as energy. Thus, we use Petri nets
where some places may have a real-valued number of tokens.
2For thourough coverage of Petri nets, we refer the reader to texts such as [9].

Each edge of the mixed-integer Petri net has a weight indicating
the number of tokens moved. When a transition fires, it removes
from its input places and adds to its output places a number of
tokens equal to the corresponding edges’ weights. Token counts
must still be non-negative, so transitions may only fire when places
contain token counts of at least the corresponding weight.

Lastly, we apply timed Petri nets, which incorporate a delay time
for each transition. Before a transition may fire, all its input places
must contain the necessary number of tokens for this delay time.
We use the delays to represent computation time.

4 CAUWS: PROPOSED METHODOLOGY
In this section, we explain CAuWS, our proposed novel scheduling
methodology for heterogeneous CPS. The input to CAuWS is a
specification that includes (1) the control flow graph (CFG) repre-
sented by the operations and the data flow in the AuWL file, (2) the
necessary performance criteria (e.g., a constraint on time, energy or
power), and (3) the profiling data for estimated runtimes and energy
consumption of tasks on available PUs. The output of CAuWS is
a heterogeneous schedule that includes (1) the set of tasks, (2) the
ordering of tasks, and (3) the mapping of tasks to PUs.

CAuWS first uses the system specification (CFG, performance cri-
teria, and profiling data) to construct a Petri net as an intermediate
representation of the CPS. Importantly, the Petri net representation
captures the parallelism and dependencies of tasks, data, and com-
putational resources (i.e., PUs) in the system. Valid firings of this
Petri net correspond to valid schedules. Then, our method uses the
Petri net to generate a set of constraints and objectives correspond-
ing to valid and optimal (with respect to the objective) schedules.
We find a solution to these constraints using a state-of-the-art solver
(specifically, Z3 [6, 17]) to obtain a heterogeneous schedule that sat-
isfies the physical requirements. Z3 guarantees optimality given an
objective, selecting from the wider set of Pareto-optimal schedules.

Most CPS workloads permit two simplifying assumptions that
CAuWS makes based on prior knowledge of the workload.

First, CPS workloads often operate at discrete time steps, e.g.,
running a set of tasks per image frames captured at a fixed frequency.
These time steps introduce natural synchronization points after
a set of tasks. In contrast, some dynamic scheduling approaches
maintain a queue of tasks to execute. By knowing all tasks up to
the synchronization point, CAuWS finds optimal schedules for this
set of tasks.

Second, for many CPS, this workload stays the same between
time steps, allowing static scheduling. Many tasks in CPS, such as
the various computer vision networks, have fixed size inputs and
no conditionals during execution. Therefore, these tasks can be
profiled prior to runtime. Furthermore, the physical construction
(i.e., sensors and actuators) of a CPS is static, so the inputs to these
tasks often do not change.

Notably, these two assumptions enable CAuWS to produce a
set of static schedules that can handle dynamic conditions. As an
example, some CPS often have a limited number of modes — a drone
may have one mode to locate an object of interest and another mode
to monitor that object. Other times the physical environment can
change (with that change measured by sensors), and a CPS may
want to adjust scheduling based on physical parameters such as

300

ICS ’24, June 04–07, 2024, Kyoto, Japan Justin McGowen, Ismet Dagli, Neil T. Dantam, and Mehmet E. Belviranli

task unit

𝑝𝑖,in

𝑝cpu

𝑝gpu

𝑝𝑖,out𝑝𝑖,gpu

𝑝𝑖,cpu𝜏𝑖,cpu 𝜏 ′
𝑖,cpu

𝜏𝑖,gpu 𝜏 ′
𝑖,gpu

. . .

. . .

. . .

. . .

.

(a)

GPU

CPU

Cam

LIDAR

Obj. detection

Localization

Route Planning

loc.

pos.

route

(b)

Figure 2: Proposed Petri net construction. (a) Petri net “unit” for one task, which is represented by the op identifier in the AuWL
file. Each unit has multiple “paths”, one for each PU. The unit operates by (1) firing 𝜏𝑖,𝑥𝑝𝑢 to consume tokens for its input and a
selected PU, and setting a token on the place to remember the selected PU, and (2) firing 𝜏 ′

𝑖,𝑥𝑝𝑢
to set a token in the output place

and restore the PU availability token. In this example, the GPU is available. (b) An example Petri net for a minimal control
flow graph (CFG) with multiple PUs and tasks. Paths highlighted in red indicate a valid firing sequence. The highlighted firing
shows the GPU running object detection task while the CPU simultaneously runs localization task. Then, the GPU runs route
planning task.

temperature or distance. CAuWS can generate sets of schedules
for each of these cases, and then dynamically switch schedules at
runtime. That is, statically creating a policy that allows the CPS to
adapt its scheduling dynamically. We detail this process in Section 5.

4.1 System Specification
Our proposed system introduces the AutonomousWorkload Lan-

guage (AuWL) representation. AuWL describes the data flow of
tasks (i.e., the CFG) and the necessary schedule criteria (e.g., min-
imizing computation time, meeting an energy budget). This rich
specification goes beyond traditional scheduling abstractions and
is necessary to correctly satisfy physical constraints and heteroge-
neous flows. Furthermore, while past specification languages exist,
AuWL’s ability to specify constraints and flow in a single file allows
rapid configurability and a high-level abstraction of the underlying
constraints that is independent of underlying hardware.

Figure 3 contains an example AuWL representation for a simpli-
fied autonomous scenario, which must minimize execution time

model AuWL_example {
constraint (= total-power 30)
constraint (= velocity 5)
constraint (= motor-power (* velocity velocity))
constraint (< ENERGY 50)
constraint (< POWER (- total-power motor-power))
objective (- TIME)
data camera, lidar
data obj_bounding_boxes, localized_position, route
op object_detection {in=camera; out=obj_bounding_box}
op localization {in=lidar; out=localized_position}
op route_planning {in=obj_bounding_boxes, localized_position;
out=route}

}

Figure 3: An example AuWL program, defining the primary
operations, their dependencies, CPS constraints and the ob-
jective for a simplified model of an autonomous vehicle.

under several constraints. The tasks are represented by the op
keywords. object_detection and localization tasks process
camera and lidar inputs and then output obj_bounding_boxes
and localized_ position to the route_planning task. The key-
word constraint enables users to symbolically represent physical
properties. The motor-power is the square of velocity. POWER
is the remaining power budget for computation, which is the dif-
ference between total-power and motor-power. ENERGY (the
integral of POWER over TIME) is the remaining energy budget for
computation. The objective in this example is to minimize TIME
within the computation limits imposed by motor-power. Higher
motor-power use will leave less power for computation, resulting
in lower-energy PUs being preferred during scheduling.

Our scheduling method also incorporates information about
the hardware — i.e., the available PUs — and timing information
about each task and any PU on which it may run. The timing
information enables 𝐶𝐴𝑢𝑊𝑆 to ensure that specified constraints
and objectives are achieved. For the case studies, we determine these
times empirically by profiling the tasks in the workload separately.
Developing precise performance models for autonomous systems
is outside the scope of this study.

4.2 Petri Net Intermediate Representation
We use the specification given in Section 4.1 to construct a Petri
net intermediate representation, as shown in Figure 2. The Petri
net captures the structure of control flow choices and resource use,
facilitating the subsequent generation of constraints.

First, we construct the Petri net places representing shared re-
sources and available data. We construct one place for each PU
and each data element. A token in a PU place indicates that the
PU is available; when a task is running on a PU, the token must be
removed from the corresponding place. A token in a data element
place indicates that this data element is available. Data element
places will correspond to either CPS inputs (e.g., raw sensor read-
ings) or CPS outputs (e.g., actuator commands).

301

Scheduling for Cyber-Physical Systems with Heterogeneous Processing Units under Real-World Constraints ICS ’24, June 04–07, 2024, Kyoto, Japan

Then, we construct additional places, edges, and transitions ac-
cording to the CFG defined in the AuWL specification. This con-
struction consists of multiple units in the form of Figure 2a. For each
PU to which a task 𝑖 may be assigned, we create (1) a place (𝑝𝑖,xpu)
indicating the task 𝑖 is running on PU xpu, (2) a transition 𝜏𝑖,xpu
indicating the task is starting on the PU, and (3) 𝜏 ′

𝑖,xpu indicating
the task is finishing on the PU. We create edges that describe the
availability of the PUs, the input, and the output. We create these
units for every task in the AuWL specification.

Finally, we augment the Petri net with the schedule criteria (con-
straints and objectives) from the AuWL file and the timing informa-
tion from the hardware specification. Some schedule criteria may
correspond to time constraints (e.g., ensuring adequate reaction/-
computation time based on a minimum stopping distance), which
we add to the Petri net as a constraint on final time, 𝑡 ⟨end⟩ ≤ const.

Other schedule criteria may indicate constraints on shared re-
sources, such as available power or energy. This capability is an ad-
vantage over typical CFG-only representations. We model a shared
resource by creating additional place 𝑝res. Then, we create edges for
transitions that use this resource. For example, running a task on a
PU requires a certain amount of power. The transition to start this
task 𝜏𝑖,xpu has incoming edge (𝑝power, 𝜏𝑖,xpu), and the transition to
finish the task has outgoing edge (𝜏𝑖,xpu, 𝑝power). Both these edges
have a weight equal to the power required to run the task on the PU.

Finally, we specify the valid initial and final markings of the Petri
net. At the initial time-step, all CPS inputs are available, and at the
final step, all CPS outputs must be available.

∀𝑝in,
(
𝑝in

⟨0⟩ = 1
)

and ∀𝑝out,
(
𝑝out

⟨end⟩ = 1
)

(1)

At the initial timestep, all resource places contain an initial value
of 𝑝res = const.

4.3 Constraint Generation
We use the Petri net to construct a set of constraints for valid sched-
ules. A solution to the constraints corresponds to a sequence of Petri
net firings and a mapping between tasks and the heterogeneous
PUs.

Marking Constraints. First, we construct constraints for subse-
quent markings (token counts) of the Petri net. The key constraint
is that a firing transition removes tokens from its input places and
adds tokens to its output places, which we define in terms of inflow
and outflow at each place,

𝑝 ⟨𝑘+1⟩ = 𝑝 ⟨𝑘 ⟩ +

inflow︷ ︸︸ ︷
|𝑇 |∑︁
𝑗=1

𝜏 𝑗
⟨𝑘 ⟩𝑊 (𝑝, 𝜏 𝑗) −

outflow︷ ︸︸ ︷
|𝑇 |∑︁
𝑗=1

𝜏 𝑗
⟨𝑘 ⟩𝑊 (𝜏 𝑗 , 𝑝) (2)

where 𝑝 ⟨𝑘 ⟩ is the token count of place 𝑝 at step 𝑘 , 𝜏 𝑗 ⟨𝑘 ⟩ is true if
transition 𝜏 fires at step 𝑘 , and𝑊 (𝑥,𝑦) is the weight of the edge
from node 𝑥 to node 𝑦.

We additionally constrain each place to have a non-negative
token count, 𝑝 ⟨𝑘 ⟩ ≥ 0, and we add constraints to ensure valid
initial and final markings (as specified in Section 4.2).

Timing Constraints. Next, we construct constraints for the tim-
ing information. A transition must be enabled before it can fire.

Transitions can only be enabled if all input places contain sufficient
tokens. After a transition has been enabled for its delay time, it will
fire and then be disabled.

We create additional variables in the constraint formula to ac-
count for timing. Real variable 𝑡 ⟨𝑘 ⟩ represents the (continuous) time
at (discrete) step 𝑘 . Boolean variable 𝑒 𝑗 ⟨𝑘 ⟩ indicates that transition 𝑗

is enabled at step 𝑘 . Real variable 𝑢 𝑗 ⟨𝑘 ⟩ indicates the time at which
transition 𝑗 was enabled.

The timing constraints ensure the validity of transitions being
enabled, firing, and disabled according to token counts, edges, and
time delays.

4.4 Schedule Generation
Finally, we solve the constraints to obtain a schedule. We use a
solver for Satisfiability Modulo Theories (SMT) — specifically, Z3 [6,
17] — to solve the constraints from Section 4.3. The solution to the
constraints corresponds to a sequence of Petri net firings and a valid
heterogeneous schedule. The schedule is encoded in the transition
firings 𝜏𝑖,xpu ⟨𝑘 ⟩ and times 𝑡 ⟨𝑘 ⟩ . When the variable 𝜏𝑖,xpu ⟨𝑘 ⟩ is true,
the schedule will assign task 𝑖 to PU xpu at time step 𝑘 , occurring
at real time 𝑡 ⟨𝑘 ⟩ . We collect all such true firing variables 𝜏𝑖,xpu ⟨𝑘 ⟩

and all times 𝑡 ⟨𝑘 ⟩ to determine the full heterogeneous schedule.

5 HANDLING DYNAMIC CONDITIONS IN CPS
VIA STATIC SCHEDULING

Our proposed methodology in Section 4 produces optimal sched-
ules only if computation time and physical factors (e.g., velocity,
battery) can be considered statically, before execution. CAuWS
produces schedules from an MILP which is not feasible to solve
dynamically during the operation of a CPS. Table 1 shows how Z3
solver runtimes are affected by schedule complexity. This static
assumption may be considered limiting, however, we explain in this
section how we work around this to handle dynamically changing
computational and physical aspects via an adaptive set of static
schedules.

5.1 Computation Time
Computation time in most CPS scenarios depends on the following
factors (and assumptions) which can be known beforehand:

• Input size: In a typical CPS, the input data is provided by fixed
resolution devices, such as cameras or lidar. Moreover, many
neural networks that CPS rely on are designed to operate on a
fixed image or video frame sizes.

• CFG topology: While some CPS scenarios have branching control
flow graphs to handle conditional computation, these branches
can often be split into separate static CFGs. The specific branch
followed in the CFG often depends solely on either the physical
mode of the system (e.g., running accurate NN or faster object
detection based on whether the drone is in discovery or tracking
mode) or on pre-determined time intervals (e.g., running a com-
plex object detection NN every 10th frames and simpler tracking
in-between [16]).

• Scene complexity: For some CPS tasks, such as route- and motion-
planning in autonomous driving and robotics, the number of
objects in a scene can increase how much computation is needed.

302

ICS ’24, June 04–07, 2024, Kyoto, Japan Justin McGowen, Ismet Dagli, Neil T. Dantam, and Mehmet E. Belviranli

Number of Accelerators
2 4

Parallel Paths: 1 2 4 1 2 4
4 total tasks 0.459 2.187 17.952 2.079 1.764 6.888
8 total tasks 4.643 6.548 52.112 62.707 5.908 15.775

Table 1: CAuWS scheduling runtime (i.e., overhead) in sec-
onds for different size of task graphs. While these times may
appear long, CAuWS supports pre-computation of multiple
schedules that can adapt to dynamic conditions or operation
modes, avoiding any overhead at runtime. Further engineer-
ing of constraints, e.g., similar to [44], remains an area of
future work.

On the other hand, some tasks, like the vision networks used in
the case study in Section 7, require the same amount of compu-
tation regardless of the current input.
When computation time can be predicted statically, creating

schedules before runtime becomes possible, and with significant
benefit: pre-computing schedules can take as much time as neces-
sary, allowing CAuWS to select only (valid) Pareto-optimal schedules.

5.2 Physical Factors
Physical factors likewise present a challenge when creating static
schedules. Cyber-physical systems operate in environments that
have changing physical conditions (e.g. current distance to obstacles
and ambient temperature).

CAuWS uniquely handles dynamically changing physical factors
by pre-computingmultiple schedules over a range of physical values
(e.g., the system must use a faster schedule when closer to obstacles,
and a more energy efficient schedule otherwise). We identify the
borders between different schedules in terms of physical factors
— i.e., the switchover points where a change in a physical parameter
causes a different schedule to best satisfy the constraints.

While searching for these schedules and their borders in the phys-
ical parameter space, it is important to limit the number of solver
invocations. As previously shown in Table 1, finding even a single
schedule is costly. As such, the feasibility of a naïve grid-based
discretization of the physical values is limited. An overly-coarse
grid means the boundaries will be inaccurate, and the schedules
generated will result in sub-optimal resource usage, or, at worst,
physical failure. However, the complexity of a grid discretization
scales poorly in both dimensionality and resolution, and so reach-
ing sufficient precision takes prohibitively long. Instead, we use a
recursive, binary partitioning of the 𝑛-dimensional hyperspace of
physical parameters. Details are explained below.

5.2.1 Linear Spaces for Varying Schedule Inputs: To formalize the
problem, we consider the schedule output by CAuWS as a function
of input parameters, which are the physical quantities in the sys-
tem that vary, such as velocity, obstacle distance, and temperature.
These physical parameters can be considered as an 𝑛-dimensional
hyperspace. For visualization, we can plot these dimensions (for a
small value of 𝑛) as the axes of a graph. Figure 4 depicts a slice of
one such hyperspace (𝑛 = 3) and how it is partitioned into different
schedules. Furthermore, finding regions for valid schedules enables
handling of some nonlinear constraints, which cannot be directly
translated to an MILP. For example, the velocity constraints are

nonlinear (𝑣2). However, if we take the velocity as a given for a
single check from the MILP, both 𝑣 and 𝑣2 become constant for the
duration of the MILP. With this, we can create optimal schedules
for all values of 𝑣 by finding the boundaries where different 𝑣 ’s
change the resulting schedule.

A key property of these schedule spaces is that, under certain
assumptions, we only need to check whether the vertices of a
schedule region are the same. A positive answer to this check will
guarantee that every schedule within the region is the same (see
the following theorem). Such vertex checks are sufficient when all
constraints are monotonic with respect to physical parameters, and
thus reduce the number of checks we need to do.

Theorem 5.1. If all points on the border of a convex region 𝑅

in a hyperspace share the same valid schedule, and as each input
parameter (taken separately) varies, all physical constraints are either
more or less satisfied, then the entirety of 𝑅 must share the same
schedule. Given these input parameters as a basis, for any point 𝑃 in
𝑅 we can define a path 𝐿 through 𝑃 that starts and ends on the border
of 𝑅 along these bases, such that all constraints are more strongly
satisfied along 𝐿. If 𝑃 did not share a schedule, then the schedule must
change twice along 𝐿 - but this would require some constraint to be
violated, which is impossible as all constraints are monotonically more
satisfied. (See Appendix A.3 for the proof.)

This holds for our experiments as all constraints are monotonic
with respect to obstacle distance, velocity, and temperature. The
stopping distance strictly increases with velocity, power usage
strictly increases with velocity, and maximum heat generation
strictly decreases with ambient temperature.

5.2.2 Algorithm to Find Schedule Boundaries: To avoid the high
number of CAuWS invocations that a grid-based discretization
of the parameter space would cause, we propose a binary space
partitioning algorithm to find schedule boundaries. The MILP for-
mulation in CAuWS limits optimal scheduling queries to a single
parameter point. Thus, we identify convex regions for a valid sched-
ule by finding sets of vertices that share the same schedule.

Divide each dimension in half to create 2𝑛 hypercubes
Sample all corners of the hypercubes
By the theorem, if the corners of a hypercube share

the same schedule, the whole hypercube does,
and the schedule can be returned

If the corners of a hypercube are not the same,
recursively subdivide and repeat

Terminate as a base case when hypercube
is smaller than some desired tolerance

At runtime, check which hypercube the desired
point is in and get the corresponding schedule

Listing 1: Binary-space partitioning

We identify the scheduling regions using the binary space par-
titioning approach given in Listing 1. Based on Theorem 5.1, this
algorithm checks the vertices of a hypercube. If all vertices have the
same schedule, then that schedule is valid throughout the hyper-
cube. Otherwise, we recursively subdivide the hypercube down to a
given minimum resolution. The result is a set of hypercubes of vary-
ing sizes, each corresponding to a schedule that covers the space. An
example of such partitioning is given in the upper-half of Figure 4.

303

Scheduling for Cyber-Physical Systems with Heterogeneous Processing Units under Real-World Constraints ICS ’24, June 04–07, 2024, Kyoto, Japan

Schedule 1
CPU:
GPU:
DLA:

Schedule 2
CPU:
GPU:
DLA:

Schedule 3
CPU:
GPU:
DLA:

SLAM

SLAM

SLAM

SEG
REC

REC

REC

SEGMENTATION

SEGMENTATION

80

60

40

20
0 1 2 3 40.5 1.5 2.5 3.5

90

70

50

30

Vel (m/s)

Te
m

p
(C

)
Schedule 3

Schedule 2

S
ch

ed
 1

No
Valid

Schedule

Figure 4: The set of schedules generated for the case study.
CAuWS can pre-compute multiple schedules for varying
physical parameters, creating a policy such as “if speed is
less than 3m/s and ambient temperature is less than 76, run
NN 1 on the GPU and NN 2 on the DLA simultaneously.” This
particular set of schedules is a slice that applies when the
drone’s distance to obstacles is 2m. Schedule 1 is fast but
uses more energy, while schedule 3 is slow but more energy
efficient, due to the choice of processors.

6 EXPERIMENTS
Our experiments include two simulation case studies and two sets
of smaller tests. The two case studies involve a simulated Iris 3DR
drone that must run various computer vision and planning work-
loads on an off-the-shelf SoC. Our case studies demonstrate the
range of constraints CAuWS can consider at once. The first environ-
ment is a search-and-rescue task where we must also consider heat
limitations due to a fire, while balancing energy and latency. The
second is an adversary pursuit, with different priorities before and
after adversary detection, while obeying power limits. These envi-
ronments share the same drone and run similar vision networks,
but are otherwise separate.

While we consider drones in these case studies to demonstrate
a more compelling example, CAuWS would work as well on any
other CPS that meets the requirements for static scheduling (as
previously explained in Section 5). Likewise, more complex en-
vironments result in more physical constraints, creating a more
challenging scheduling problem. CAuWS can represent simple en-
vironments too. Many real systems will often have similar numbers
of constraints, though perhaps with less drastic failures. Lastly, we
demonstrate the variety of constraints that CAuWS supports with
a set of small synthetic experiments.

Figure 5: A screenshot of the simulationwhich includes quad-
copter dynamics for a simulated 3DR-Iris quadcopter drone,
positional heat sources (the orange dot), and obstacles. The
highlighted path is colored based on what schedule CAuWS
chooses, with different choices when close to the wall or heat
source. These schedules correspond to those in Figure 4.

6.1 Methodology
The time, energy, and power use of the computational tasks must
be predetermined for CAuWS. As the compute platform, we pick
NVIDIA’s Xavier [20] AGX and NX. They both provide two acceler-
ators: GPU (low-latency) and DLA (low-power). We run and profile
a variety of neural networks (NNs) supported by TensorRT [42]
on both GPU and DLA. Data is collected with the offline profiler
IProfiler over 5000 iterations, excluding the first 1000 iterations
of the warm-up period. During operation, the drone would also
run these networks repeatedly and would not need warm-up. We
profile ORB-SLAM [39] on the CPU with one to four reserved cores
using the C++ chrono library. Profiling data is fed to CAuWS via a
separate file listing latency, power, and energy consumption values.

7 CASE STUDY 1: ENVIRONMENT-LIMITED
SEARCH AND RESCUE

In this section, we first explain our simulation environment and the
corresponding constraints. We then detail the three constraints we
use in the case study and how we integrate them into CAuWS. We
finally discuss how we ensure that the constrained optimization
problems that CAuWS generates remain linear, and thus effectively
solvable.

7.1 Description
The first simulation is a search and rescue task with a quadcopter
(3DR Iris) in a burning house. The drone must explore the house
to monitor fires and discover those in need of help. There are also
industrial applications in hot environments that may present sim-
ilar constraints. Such a drone is useful as it can explore without
putting firefighters at risk. Fires and built environments can also

304

ICS ’24, June 04–07, 2024, Kyoto, Japan Justin McGowen, Ismet Dagli, Neil T. Dantam, and Mehmet E. Belviranli

disrupt radio communication, so autonomy is often necessary in
such situations.

For this task, the drone has a camera and an NVIDIA Xavier
AGX SOC, notably containing an 8-core ARM CPU, a Volta-based
GPU, and two DLAs.

The simulation follows a predefined route through a hallway
corner with a heat source. Figure 5 provides screenshots of this
scenario from the simulation environment.

The drone must run the following tasks to complete its objective:
(1) an image identification network to identify humans in need
of rescue in order to contact help, (2) an image segmentation net-
work to parse the environment into walls, doorways, and fires, and
(3) Simultaneous Localization and Mapping (SLAM) to know its
position in the environment (which can also correlate with the
segmentation). These tasks were profiled offline on the AGX in
terms of computation time and energy. This creates a workload
with dependencies that CAuWS must then schedule.

Once the drone has the output of these tasks, it can plan its future
actions on a solo CPU. We neglect this task because the time and
energy it contributes is negligible, especially when run in parallel to
the more intensive task. As CAuWS precomputes schedules before
operation, the cost of selecting the appropriate schedule is also
negligible.

7.2 Constraints
This environment induces a set of three constraints for CAuWS.
Our novel DSL and Petri net based representation makes it trivial
to support additional constraints for different scenarios. These
constraints are as follows:

(1) Heat: The system cannot use too much computation power,
otherwise it will overheat in the hot environment

(2) Power: The system must schedule within the power constraints
caused by variations in speed and motor power.

(3) Stopping distance: The system must maintain a safe latency to
react and stop at the given velocity and obstacle distance.

Additionally, when these constraints are satisfied and if there
is some freedom left, we want to minimize latency and energy
usage. The specific linear trade-off between energy and latency is
defined in the AuWL file (Figure 6). While general multi-objective
optimization can consider nonlinear trade-offs, MILP solvers can
find the global optimum for linear objectives such as this.

The constraints are expressed to CAuWS through the AuWL file
given in Figure 6. The system has a variety of ways to respond to
the constraints. The scheduling targets include a CPU, GPU, and
DLA to choose from. In general, for NN-based computer vision
tasks, the DLA will be more energy efficient but slower than the
GPU, therefore producing less heat. Parallelism can reduce latency
at the cost of maximum power usage. These different responses create
a set of three schedules (as depicted in Figure 4) that CAuWS chooses
from over the course of the simulation.

Once the constraints and optimality objective are expressed in
the AuWL file, CAuWS successfully produces the optimal schedule
that adheres to the constraints. The latency is defined as the time
it takes to run one “iteration” of the schedule — that is, to run the
autonomous loop body once.

The set of formal constraints these physical limitations creates
is as follows. (See Appendix A.2 for a more detailed explanation
of the algebra, assumptions, and determination of experimental
constants.)

7.2.1 Heat: As heat is a constraining factor in computation, the
fire in the simulation creates a rapidly varying temperature case
which CAuWS must adapt. If ambient temperature is too hot, it
must schedule tasks on the DLA instead of GPU to reduce the heat
produced by the computation. We place a constraint on steady-
state heat flow, where the total heat flow from cooling (over the
course of the schedule) must be greater than the heat generated
by the schedule. Cooling rate depends on ambient temperature
𝑇𝑎𝑚𝑏 . With 𝑇𝑚𝑎𝑥 as maximum operating temperature, 𝐶 as total
dissipated heat, 𝐸𝑜𝑝 as the energy of each operation, and for an
experimentally determined cooling rate 𝑘 , the constraint can be
represented as:

𝐶 ·
(∑︁

𝐸𝑜𝑝 − 𝑘 (𝑇𝑚𝑎𝑥 −𝑇𝑎𝑚𝑏) · 𝑡 ⟨end⟩
)
≤ Δ𝑇𝑠𝑦𝑠 ≤ 0 (3)

CAuWS can adapt different schedules as𝑇𝑎𝑚𝑏 varies due to distance
from the heat source.

7.2.2 Actuation Power: The power output of the battery at any
given moment is shared between the rotors’ actuation and the
computation, placing a constraint between computation power,
acceleration and velocity.

Some constant power 𝑃𝑎𝑙𝑜 𝑓 𝑡 must be spent to keep the drone
aloft. Additional power is used to accelerate (𝑃𝑎𝑐𝑐) and maintain
velocity (𝑃𝑣𝑒𝑙) against increasing air resistance. Although the drone
will angle itself to produce the thrust for both hovering and horizon-
tal forces at the same time, considering them separately will only
slightly overestimate power and conservatively limit computation
power. In this experiment, 𝑃𝑎𝑙𝑜 𝑓 𝑡 > 5(𝑃𝑣𝑒𝑙 + 𝑃𝑎𝑐𝑐), so the effects
are relatively minor.

𝑃𝑏𝑎𝑡𝑡𝑒𝑟𝑦 > 𝑃𝑎𝑐𝑐𝑒𝑙 + 𝑃𝑣𝑒𝑙 + 𝑃𝑎𝑙𝑜 𝑓 𝑡 + 𝑃𝑐𝑜𝑚𝑝 (4)

CAuWS selects schedules that obey this power constraint.

7.2.3 Stopping Distance: As the compute latency increases, the
stopping distance increases due to the additional “reaction” time of
the drone. A given velocity thus places an upper bound on latency,
so that the system reacts in time and avoids unexpected collisions.
In these situations, some tasks can be scheduled on GPU to reduce
latency at the cost of energy. We can determine a maximum accel-
eration by assuming the drone directs all remaining power to its
rotors. Using this value 𝑎𝑚𝑎𝑥 we rewrite the stopping time as 𝑣

𝑎𝑚𝑎𝑥
,

resulting in the following equation of motion:

𝐷𝑜𝑏𝑠𝑡 > 𝐷𝑠𝑡𝑜𝑝 = 𝑣 · 𝑡 ⟨end⟩ + 1
2𝑎𝑚𝑎𝑥

· 𝑣2 (5)

𝐷𝑜𝑏𝑠𝑡 varies over the simulation as the drone moves. CAuWS can
adapt to this variation while satisfying other constraints in the
meantime.

7.2.4 Constraint Linearization: MILP solvers support linear con-
straints; however, physical dynamics often contain non-linearities.
For example, velocity 𝑣 appears in the terms 𝑣𝑡 ⟨end⟩ and 𝑣2 above.
Importantly, velocity is not a “decision variable” — i.e., not an output
of CAuWS. Following the algorithm we proposed in Section 5.2.2,

305

Scheduling for Cyber-Physical Systems with Heterogeneous Processing Units under Real-World Constraints ICS ’24, June 04–07, 2024, Kyoto, Japan

model case_study_one {
cnstrnt (= newtonsPerWatt 0.020979)
cnstrnt (= velocityVsPowerConstant 7.602631123)
cnstrnt (= mass 1.5)
cnstrnt (= batteryPower 1800)
cnstrnt (= maxTemp 85)
cnstrnt (= kConductivity .00559)
cnstrnt (= tempPerJoule 0.01685714286)
cnstrnt (= idlePower 700.7)
cnstrnt (= maxAcc (/ mass (* batteryPow newtonsPerWatt)))
cnstrnt (= stopDist (+ (* $svel $svel TIME)
(/ (* $svel $svel $svel $svel) (* 2.0 maxAcc))))

cnstrnt (< stopDist $distToObs)
cnstrnt (= velPower (* velocityVsPowerConstant $svel))
cnstrnt (> batteryPow (+ POWER velPower idlePower))
cnstrnt (= tmpDelta (- maxTemp $ambTemp))
cnstrnt (= maxTempOut (* TIME kCondctivity tmpDelta))
cnstrnt (> maxTempOut (* HEAT tempPerJoule))
objective (* -1 (+ (* 0.5 HEAT) (* 1.5 TIME) (* -2 POWER)))
data camera, position
data object_bounding_boxes, hazard_segmentation
op resnet {in=camera;out=object_bounding_boxes}
op fcn {in=camera;out=hazard_segmentation}
op slam {in=camera;out=position}

}

Figure 6: The AuWL file corresponding to the first case study.
It defines the control flow graph and places constraints on
heat generation, power consumption, and latency.

we query CAuWS to find schedules for a given 𝑣 , so 𝑣2 is also con-
stant for that query. This lets us query multiple linear problems
to find (possibly nonlinear) dividing borders in Figure 4. Addition-
ally, the steady state heat equation is used to avoid an exponential
relationship between

∑
𝐸𝑜𝑝 and 𝑡 ⟨end⟩ .

7.3 Results
The drone’s travel results in ambient temperatures ranging from
27 to 73 ◦𝐶 , velocities up to 9.73𝑚𝑠 , and obstacle distances as low
as 0.3𝑚. A trace of this simulation, shown in Figure 5, records tem-
perature, velocity, and obstacle distance. These values are fed into
CAuWS, which then successfully finds the best schedules that sat-
isfy the constraints and optimization objective. The accuracy of
the physical conditions in the simulation relies on having accurate
representations in the AuWL file. We determine the constraints in
the AuWL file either from the 3DR Iris specification or experimen-
tally from simulation, as previously described in Section 7.2. The
resulting AuWL file is given in Figure 6.

7.3.1 Resulting Schedules: After profiling data is integrated, the
solver outputs the set of schedules, as shown in Figure 4. As long as
the drone remains within the regionwhere there are valid schedules,
CAuWS can find a schedule predicted to meet the constraints. The
path taken is drawn in Figure 5, with changing schedules colored
with different colors along the path.

The drone adapts to the varying conditions with these schedules.
Along this path, the drone goes around the corner and skirts the
wall, just before passing close to the fire. The corner reduces obstacle
distance and required latency (schedule 1). As the drone approaches
the heat source, a more energy-efficient schedule must be chosen
(schedule 3). In other cases, it defaults to schedule 2.

Past schedulers, which do not consider physical constraints,
could only choose one of these possible schedules and would violate

physical constraints for at least 25% of the path length. If the path
went significantly closer to the wall or fire, there would be no
possible schedules regardless of which schedule is used.

7.3.2 Predicted vs. Simulated Results: The calculated schedules
are then run on the Xavier AGX as the drone follows the trace, with
each schedule running multiple times in a row over the course of
the drone’s path. This resulted in a total execution time of 9.96𝑠
and energy of 84.5𝐽 , compared to the predicted time of 9.19𝑠 and
energy of 96.7𝐽 .We identified that themisprediction originates from
the shared memory contention as multiple PUs run concurrently
and issue memory accesses. In our experiments, we also find that
these errors of 8% and 14% (respectively) occur consistently in
all iterations. The consistency easily allows a safety margin to be
added to time constraints so that prediction errors due to shared
memory contention [53] are mitigated. Such errors would likely be
more permanently addressed by integrating slowdowns occurring
due to shared resource contention into the Petri net based internal
representation.

7.3.3 Potential FutureWork: While this scenario demonstrates the
important trade-off between latency and energy while also consid-
ering physical constraints, there are other considerations that could
be interesting. In this specific example scenario, the power con-
straint does not end up impacting the scheduling choice. Throttling
would be another option to consider in order to avoid overheating,
since CAuWS is capable of representing discrete throttling values.
Likewise, it may be possible to subdivide neural network layers for
finer gradients of schedules.

8 CASE STUDY 2: DISCOVERY & TRACKING
We also demonstrate CAuWS’s versatility in mapping physical
constraints of CPS to computational scheduling with two additional
simulations, where an aerial dronemust discover and follow another
aerial adversary. In both scenarios, the adversary is represented
with a pre-defined velocity curve that our drone follows. In this
scenario, we use the NX version of Xavier series, which has a lower
maximum power consumption when compared to the AGX version.
These experiments demonstrate that CAuWS can handle different
modes of operation by pre-computing schedules for dynamically
changing environmental constraints.

8.1 Criteria 1: Power Limits
As explained in Section 7.2, the available power in a drone is shared
between the computation and the actuation (rotors), and the total
power a battery can provide is limited. Thus, rapid acceleration may
require the NN to run on the more power-efficient DLA instead of
the GPU. We test this scenario, which is simulated with the PX4
simulator [21], under the following objective and constraints in the
AuWL input:
constraint (= drone-power (+ rotor-power idle-power))
constraint (< (+ drone-power POWER) 402))
objective (- TIME)

Figure 7 shows a timeline of the resulting power consumption.
The adversary may have a higher velocity to which the drone must
adapt, and this requires the drone to accelerate with higher power
needs. While, in this scenario, computation uses only a fraction

306

ICS ’24, June 04–07, 2024, Kyoto, Japan Justin McGowen, Ismet Dagli, Neil T. Dantam, and Mehmet E. Belviranli

of the physical power required, with a tight budget on the power,
the schedule still must minimize the computation power. This is
achieved by utilizing the energy-efficient.

8.2 Criteria 2: Multiple Modes and Latency
Limits

The drone discovery and tracking scenario consists of two modes:
looking for an adversary and following the adversary. These two
modes impose different scheduling criteria. CAuWS is still able to
operate in different modes by pre-computing the corresponding
Pareto-optimal schedules, despite its static nature. When looking
for an adversary, the drone must minimize power consumption
to maximize its flight time. Once the drone detects and begins to
follow the adversary, the scheduling requirements change. First,
the drone now has a hard constraint on computation time to ensure
that the adversary does not leave its field of view. Second, the drone
must maximize the tracking accuracy (i.e., trade-off between using
efficient vs. accurate NNs), minimize its power use (i.e., improving
flight time), and minimize the total computation time. Assuming
the drone can safely take longer to perform object detection via
more accurate NNs, the quality of the object detection becomes
most important. We represent this scenario using the following
constraints and a linear combination of objectives in the input
AuWL file:

constraint (= minimum-latency (/ 0.035 adv-velocity))
constraint (< TIME minimum-latency)
objective (+ ACCURACY (/ POWER -1000)(/ TIME -10000))

Figure 8 shows the results of this multi-mode flight scenario.
CAuWS successfully chooses the lowest power option leading up
to the encounter (shown with vertical dashed lines). After the en-
counter, the necessary latency is maintained to account for the
adversary’s velocity while optimizing the other values in the prior-
ity order (accuracy, then power).

Available Power
Compute Power
Rotor Power
Total Power
Latency

P
ow

er
 (W

)

La
te

nc
y

(s
)

Latency-Power Trade-off

Time (s)

Figure 7: Power consumption in a pursuit flight. CAuWS
balances power and latency under total power limits. Power
values are maxed over a .05s window to demonstrate that
CAuWS is able to rapidly adapt to changing power limits.

0 10
0

5

10

15

20

.

0 10
0

2

4

6

8

10

12
. .

0.00

0.01

0.02

0.03

0.04

40

50

60

70

80

90

Figure 8: Search/Pursuit Modes Scenario: CAuWS can create
schedules covering multiple operation “modes” in a simu-
lated flight, enforcing different constraints for each. This
example includes latency, network size, and power in a simu-
lated pursuit scenario where the required computation speed
increases when the adversary speeds up after detection.

9 COMPARISONWITH STATE-OF-THE-ART
To our knowledge, there are no related works that have the same
full set of considerations as CAuWS. They all differ through some
combination of:
• Not considering scheduling
• Not considering scheduling for heterogeneous SoC’s
• Not considering physical constraints
• Utilizing ready-to-execute task queues instead of considering the
future tasks the CFG will follow

As such, a direct comparison with previous work becomes difficult.
Instead, we compare aspects of CAuWS against two bodies of work:
• The F-1 technique [28, 29] which, while it does not produce
schedules, does select SoCs [29] and generated domain-specific
SoCs [28] from a physically constrained Pareto frontier. The
only factor, the stopping distance, that F-1 considers is also a
constraint in our case study.

• Π-RT [34], an approach that can produce schedules for heteroge-
neous SoCs. It provides methods that attempt to either reduce
latency or energy use. This technique, while it cannot consider
arbitrary CFGs, can consider tasks at a similar granularity as
CAuWS does. Unlike CAuWS, Π-RT cannot adhere to physical
constraints, requires tuning of hyper-parameters, and cannot au-
tomatically adapt its scheduling approach to varying conditions.

9.1 F-1: Roofline Model for Physical Constraints
State-of-the-art constraint-based schedulers exist, but the constraints
they target are limited to the ones that represent dependencies, la-
tencies, etc., and do not consider physical constraints. These sched-
ulers rely on ad hoc techniques to place guarantees on latency or
energy. The F-1 technique [28, 29] is the closest comparison that
considers physical constraints in relation to computational capabil-
ities. However, F-1 does not make scheduling decisions and instead
focuses on making HW design decisions. CAuWS is the first work
that we are aware of, which combines both constraint scheduling

307

Scheduling for Cyber-Physical Systems with Heterogeneous Processing Units under Real-World Constraints ICS ’24, June 04–07, 2024, Kyoto, Japan

400

600

800

E
ne

rg
y

(m
J)

Env 1 (dist=2.13m, temp=76.9C, vel=5m/s)

20 40 100 120
400

600

800

E
ne

rg
y

(m
J)

PI-rt latency
PI-rt energy
Min-time greedy
True optimal latency

True optimal energy
CAuWS (case 1)
CAuWS (case 2)

Env 2 (dist=2.01m, temp=65.2C, vel=5m/s)

Latency (ms)
60 80

20 40 100 120
Latency (ms)
60 80

Figure 9: A comparison of the possible schedules that the two
approaches of Π-RT [34], a time-first greedy algorithm and
CAuWS generate. The two environments induce different
time and energy constraints, whichCAuWS can adjust for. All
of the possible schedules fromΠ-RT and the greedy scheduler
lie outside the constraints for these examples.

and physical considerations. F-1 proposes a mathematical approach
to relate a single constraint, i.e., the stopping distance limitation, to
choosing an SoC that will be placed on a drone. The trade-offs that F-
1 considers are between SoC weight, SoC latency, rotor weight, and
rotor power. They produce extended roofline models to represent
this relation analytically.

CAuWS differs by considering scheduling on multiple physical
constraints. While F-1 only considers velocity, CAuWS considers
constraints on heat, velocity, and power. This expansion is non-
trivial as the optimum of the roofline models is a maximum overall
constraint, while including multiple dimensions introduces trade-
offs between values such that increasing one value could violate a
constraint on another. CAuWS can also represent the relation in
[29] with the following AuWL constraints:

(= distance 10)
(> distance (+ (* $vel TIME) (* $vel $vel AMAXINV)))

where the value 1
2𝑎𝑚𝑎𝑥

(AMAXINV) divides the velocity into a valid
and invalid region, similar to the one shown in Figure 4 - the border
between these being the maximum velocity.

9.2 Π-RT: Scheduling for Heterogeneous SoCs
While many works that can schedule for heterogeneous SoCs exist,
Π-RT [34] is the closest study, that we are aware of, to CAuWS.
Π-RT and CAuWS share the same inputs (a set of tasks and profiling
data) and outputs (a mapping between tasks and processors). There
are three ways in which CAuWS demonstrates superiority against

Π-RT, also as shown by the experimental comparison results given
in Figure 9:

• CAuWS finds globally optimal solutions without tuning. Most
studies on heterogeneous scheduling, such as Π-RT, often use
heuristics to avoid the complexity of NP-complete scheduling. Al-
though suchwork can handlemuch larger problems than CAuWS,
their approaches result in nonoptimal schedules and often re-
quire fine-tuning of heuristic parameters. The need for support-
ing a large number of tasks can be unnecessary, as many CPS
applications, especially those adhering to our assumptions, have
relatively fewer tasks. As shown in Figure 9, CAuWS, without
tuning, finds the most optimal schedule adhering to the given
constraints. CAuWS is guaranteed by the MILP solver objective
to find a Pareto-optimal schedule.

• CAuWS produces schedules that adhere to physical constraints
while Π-RT does not consider physical constraints. Furthermore,
CAuWS can find schedules that Π-RT cannot, some of which are
necessary for the safe operation of the CPS. Shown in Figure 9
are all possible resulting schedules from choosing Π-RT’s hyper-
parameters (queue weights) and energy- or latency-first approach
— none lie within the valid region.

• CAuWS automatically adapts the schedules to these constraints.
While Π-RT provides energy- and latency-first approaches, these
have to be manually selected ahead of time based on prior knowl-
edge of the tasks. CAuWS produces multiple schedules that can
automatically adapt to these conditions and the result of this
capability can be observed in Figure 9.

10 CONCLUSION
We present 𝐶𝐴𝑢𝑊𝑆 , a system for representing and generating op-
timal schedules for CPS with heterogeneous PUs. Our approach
could handle changing physical constraints for a variety of CPS sce-
narios. Its capability is demonstrated on a popular heterogeneous
compute platform, NVIDIA’s Xavier SoC, controlling a simulated
drone. 𝐶𝐴𝑢𝑊𝑆 offers a foundation to address an expanded set of
scheduling problems that take into account physical constraints.

ACKNOWLEDGMENTS
This material is based upon work supported by the National Science
Foundation (NSF) under Grant No. CCF-2124010. Any opinions,
findings, or recommendations expressed in this material are those
of the authors and do not necessarily reflect the views of NSF.

REFERENCES
[1] Hamid Arabnejad and Jorge G Barbosa. 2013. List scheduling algorithm for

heterogeneous systems by an optimistic cost table. IEEE transactions on parallel
and distributed systems 25, 3 (2013), 682–694.

[2] Riyadh Baghdadi, Jessica Ray, Malek Ben Romdhane, Emanuele Del Sozzo, Ab-
durrahman Akkas, Yunming Zhang, Patricia Suriana, Shoaib Kamil, and Saman
Amarasinghe. 2019. Tiramisu: A polyhedral compiler for expressing fast and
portable code. In 2019 IEEE/ACM International Symposium on Code Generation
and Optimization (CGO). IEEE, 193–205.

[3] Mehmet E Belviranli, Laxmi N Bhuyan, and Rajiv Gupta. 2013. A dynamic
self-scheduling scheme for heterogeneous multiprocessor architectures. ACM
Transactions on Architecture and Code Optimization (TACO) 9, 4 (2013), 1–20.

[4] Mehmet E Belviranli, Seyong Lee, Jeffrey S Vetter, and Laxmi N Bhuyan. 2018.
Juggler: a dependence-aware task-based execution framework for GPUs. In Pro-
ceedings of the 23rd ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming. 54–67.

308

ICS ’24, June 04–07, 2024, Kyoto, Japan Justin McGowen, Ismet Dagli, Neil T. Dantam, and Mehmet E. Belviranli

[5] Arnamoy Bhattacharyya and Torsten Hoefler. 2014. Pemogen: Automatic adap-
tive performance modeling during program runtime. In Proceedings of the 23rd
international conference on Parallel architectures and compilation. 393–404.

[6] Nikolaj Bjørner, Anh-Dung Phan, and Lars Fleckenstein. 2015. 𝜈z-an optimizing
SMT solver. In Tools and Algorithms for the Construction and Analysis of Systems:
21st International Conference, TACAS 2015. Springer, 194–199.

[7] Behzad Boroujerdian, Radhika Ghosal, Jonathan Cruz, Brian Plancher, and Vi-
jay Janapa Reddi. 2021. Roborun: A robot runtime to exploit spatial heterogeneity.
In 2021 58th ACM/IEEE Design Automation Conference (DAC). IEEE, 829–834.

[8] Kevin J Brown, Arvind K Sujeeth, Hyouk Joong Lee, Tiark Rompf, Hassan Chafi,
Martin Odersky, and Kunle Olukotun. 2011. A heterogeneous parallel frame-
work for domain-specific languages. In 2011 International Conference on Parallel
Architectures and Compilation Techniques. IEEE, 89–100.

[9] Christos G Cassandras and Stéphane Lafortune. 2008. Introduction to discrete
event systems. Springer.

[10] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie Yan, Haichen
Shen, Meghan Cowan, Leyuan Wang, Yuwei Hu, Luis Ceze, et al. 2018. {TVM}:
An automated {End-to-End} optimizing compiler for deep learning. In 13th
USENIX Symposium on Operating Systems Design and Implementation (OSDI 18).
578–594.

[11] Hyunjong Choi, Yecheng Xiang, and Hyoseung Kim. 2021. PiCAS: New design of
priority-driven chain-aware scheduling for ROS2. In 2021 IEEE 27th Real-Time
and Embedded Technology and Applications Symposium (RTAS).

[12] Ismet Dagli and Mehmet E. Belviranli. 2024. Shared Memory-contention-aware
Concurrent DNN Execution for Diversely Heterogeneous System-on-Chips. In
Proceedings of the 29th ACM SIGPLAN Annual Symposium on Principles and Prac-
tice of Parallel Programming (Edinburgh, United Kingdom) (PPoPP ’24). 243–256.

[13] Ismet Dagli, Alexander Cieslewicz, Jedidiah McClurg, and Mehmet E Belviranli.
2022. AxoNN: Energy-aware execution of neural network inference on multi-
accelerator heterogeneous SoCs. In DAC.

[14] Neil T Dantam, Zachary K Kingston, Swarat Chaudhuri, and Lydia E Kavraki.
2018. An incremental constraint-based framework for task and motion planning.
The International Journal of Robotics Research 37, 10 (2018), 1134–1151.

[15] Mohammad I Daoud and Nawwaf Kharma. 2011. A hybrid heuristic–genetic
algorithm for task scheduling in heterogeneous processor networks. J. Parallel
and Distrib. Comput. 71, 11 (2011), 1518–1531.

[16] Justin Davis and Mehmet E. Belviranli. 2024. Context-aware Multi-Model Ob-
ject Detection for Diversely Heterogeneous Compute Systems. In IEEE Design,
Automation Test in Europe Conference Exhibition (DATE).

[17] Leonardo De Moura and Nikolaj Bjørner. 2008. Z3: An efficient SMT solver. In
International conference on Tools and Algorithms for the Construction and Analysis
of Systems. Springer, 337–340.

[18] Leonardo De Moura and Nikolaj Bjørner. 2011. Satisfiability modulo theories:
introduction and applications. Commun. ACM 54, 9 (2011), 69–77.

[19] Isabel Demongodin and Nick T Koussoulas. 1998. Differential Petri nets: Rep-
resenting continuous systems in a discrete-event world. IEEE transactions on
Automatic Control 43, 4 (1998), 573–579.

[20] Michael Ditty, Ashish Karandikar, and David Reed. 2018. Nvidia’s xavier soc. In
Hot chips: a symposium on high performance chips.

[21] Fadri Furrer, Michael Burri, Markus Achtelik, and Roland Siegwart. 2016. Ro-
tors—a modular gazebo mav simulator framework. Robot Operating System (ROS)
The Complete Reference (Volume 1) (2016), 595–625.

[22] Carlo Ghezzi, Dino Mandrioli, Sandro Morasca, and Mauro Pezze. 1991. A unified
high-level Petri net formalism for time-critical systems. IEEE Transactions on
software engineering 17, 2 (1991), 160.

[23] Dominik Grewe and Michael FP O’Boyle. 2011. A static task partitioning ap-
proach for heterogeneous systems using OpenCL. In Compiler Construction: 20th
International Conference, CC 2011. Springer, 286–305.

[24] Gurobi. 2022. Gurobi Optimizer Reference Manual. http://www.gurobi.com
[25] Ramyad Hadidi, Bahar Asgari, Sam Jijina, Adriana Amyette, Nima Shoghi, and

Hyesoon Kim. 2021. Quantifying the design-space tradeoffs in autonomous
drones. In Proceedings of the 26th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems. 661–673.

[26] Henry A Kautz, Bart Selman, et al. 1992. Planning as Satisfiability.. In ECAI,
Vol. 92. Citeseer, 359–363.

[27] Minhaj Ahmad Khan. 2012. Scheduling for heterogeneous systems using con-
strained critical paths. Parallel Comput. 38, 4-5 (2012), 175–193.

[28] Srivatsan Krishnan, ZishenWan, Kshitij Bhardwaj, Paul Whatmough, Aleksandra
Faust, Sabrina Neuman, Gu-Yeon Wei, David Brooks, and Vijay Janapa Reddi.
2022. Automatic domain-specific soc design for autonomous unmanned aerial
vehicles. In 2022 55th IEEE/ACM International Symposium on Microarchitecture
(MICRO). IEEE, 300–317.

[29] Srivatsan Krishnan, ZishenWan, Kshitij Bhardwaj, Paul Whatmough, Aleksandra
Faust, Gu-Yeon Wei, David Brooks, and Vijay Janapa Reddi. 2020. The sky
is not the limit: A visual performance model for cyber-physical co-design in
autonomous machines. IEEE Computer Architecture Letters 19, 1 (2020), 38–42.

[30] Sekhri Larbi and Slimane Mohamed. 2014. Modeling the Scheduling Problem of
Identical Parallel Machines with Load Balancing by Time Petri Nets. Intl. Journal

of Intelligent Systems & Applications 7, 1 (2014).
[31] Edward A Lee. 2015. The past, present and future of cyber-physical systems: A

focus on models. Sensors 15, 3 (2015), 4837–4869.
[32] K. Li, X. Tang, and K. Li. 2014. Energy-Efficient Stochastic Task Scheduling

on Heterogeneous Computing Systems. IEEE Trans. on Parallel and Distributed
Systems 25, 11 (2014), 2867–2876. https://doi.org/10.1109/TPDS.2013.270

[33] Shih-Chieh Lin, Yunqi Zhang, Chang-Hong Hsu, Matt Skach, Md EHaque, Lingjia
Tang, and JasonMars. 2018. The architectural implications of autonomous driving:
Constraints and acceleration. In ASPLOS’18. 751–766.

[34] Liu Liu, Jie Tang, Shaoshan Liu, Bo Yu, Yuan Xie, and Jean-Luc Gaudiot. 2021.
𝜋 -rt: A runtime framework to enable energy-efficient real-time robotic vision
applications on heterogeneous architectures. Computer 54, 4 (2021), 14–25.

[35] R TimothyMarler and Jasbir S Arora. 2004. Survey ofmulti-objective optimization
methods for engineering. Structural and multidisciplinary optimization 26 (2004),
369–395.

[36] Xinxin Mei, Xiaowen Chu, Hai Liu, Yiu-Wing Leung, and Zongpeng Li. 2017.
Energy efficient real-time task scheduling on CPU-GPU hybrid clusters. In IEEE
INFOCOM 2017-IEEE Conference on Computer Communications. IEEE, 1–9.

[37] Ion Dan Mironescu and Lucian Vinţan. 2014. Coloured Petri Net modelling
of task scheduling on a heterogeneous computational node. In 2014 IEEE 10th
International Conference on Intelligent Computer Communication and Processing
(ICCP). IEEE, 323–330.

[38] Mohammad Alaul Haque Monil, Mehmet E Belviranli, Seyong Lee, Jeffrey S
Vetter, and Allen D Malony. 2020. MEPHESTO: Modeling Energy-Performance
in Heterogeneous SoCs and Their Trade-Offs. In Proceedings of the ACM Intl.
Conference on Parallel Architectures and Compilation Techniques. 413–425.

[39] Raúl Mur-Artal and Juan D. Tardós. 2017. ORB-SLAM2: An Open-Source SLAM
System for Monocular, Stereo, and RGB-D Cameras. IEEE Transactions on Robotics
33, 5 (2017), 1255–1262. https://doi.org/10.1109/TRO.2017.2705103

[40] Martin Naedele. 1998. Petri net models for single processor real-time scheduling.
Citeseer (1998).

[41] Dima Nikiforov, Shengjun Chris Dong, Chengyi Lux Zhang, Seah Kim, Borivoje
Nikolic, and Yakun Sophia Shao. 2023. Rosé: A hardware-software co-simulation
infrastructure enabling pre-silicon full-stack robotics soc evaluation. In Proceed-
ings of the 50th Annual International Symposium on Computer Architecture. 1–15.

[42] NVIDIA. 2022. TensorRT. https://developer.nvidia.com/tensorrt
[43] Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams, Sylvain Paris, Frédo

Durand, and Saman Amarasinghe. 2013. Halide: a language and compiler for
optimizing parallelism, locality, and recomputation in image processing pipelines.
Acm Sigplan Notices 48, 6 (2013), 519–530.

[44] Jussi Rintanen. 2012. Engineering Efficient Planners with SAT. In ECAI 2012 :
20th European Conference on Artificial Intelligence. 684–689.

[45] Seren Soner and Can Özturan. 2015. Integer programming based heterogeneous
cpu–gpu cluster schedulers for slurm resource manager. Journal of computer and
system sciences 81, 1 (2015), 38–56.

[46] Kyle L Spafford and Jeffrey S Vetter. 2012. Aspen: A domain specific language for
performance modeling. In SC’12: Proceedings of the International Conference on
High Performance Computing, Networking, Storage and Analysis. IEEE, 1–11.

[47] Soumya Sudhakar, Sertac Karaman, and Vivienne Sze. 2020. Balancing actuation
and computing energy in motion planning. In 2020 IEEE International Conference
on Robotics and Automation (ICRA). IEEE, 4259–4265.

[48] Nathan R Tallent and Adolfy Hoisie. 2014. Palm: Easing the burden of analytical
performance modeling. In Proceedings of the 28th ACM international conference
on Supercomputing. 221–230.

[49] Tesla. 2021. Artificial Intelligence & Autopilot. https://www.tesla.com/AI. (Ac-
cessed on 11/20/2021).

[50] Jeffrey J. P. Tsai, S Jennhwa Yang, and Yao-Hsiung Chang. 1995. Timing constraint
Petri nets and their application to schedulability analysis of real-time system
specifications. IEEE transactions on Software Engineering 21, 1 (1995), 32–49.

[51] Sven Verdoolaege, Juan Carlos Juega, Albert Cohen, Christian Tenllado, and
Francky Catthoor. 2013. Polyhedral parallel code generation for CUDA. ACM
Transactions on Architecture and Code Optimization (TACO) (2013), 1–23.

[52] Zishen Wan, Aqeel Anwar, Yu-Shun Hsiao, Tianyu Jia, Vijay Janapa Reddi, and
Arijit Raychowdhury. 2021. Analyzing and improving fault tolerance of learning-
based navigation systems. In 2021 58th ACM/IEEE Design Automation Conference
(DAC). IEEE, 841–846.

[53] Yuanchao Xu, Mehmet Esat Belviranli, Xipeng Shen, and Jeffrey Vetter. 2021.
Pccs: Processor-centric contention-aware slowdown model for heterogeneous
system-on-chips. In MICRO-54: 54th Annual IEEE/ACM International Symposium
on Microarchitecture. 1282–1295.

[54] Bo Yu, Wei Hu, Leimeng Xu, Jie Tang, Shaoshan Liu, and Yuhao Zhu. 2020.
Building the computing system for autonomous micromobility vehicles: De-
sign constraints and architectural optimizations. In 2020 53rd Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO). IEEE, 1067–1081.

[55] Haitao Zhang and Feiyue Wang. 2005. A review of petri net based modeling and
verification for embedded real-time systems. In International Design Engineering
Technical Conferences and Computers and Information in Engineering Conference,
Vol. 47411. 257–264.

309

http://www.gurobi.com
https://doi.org/10.1109/TPDS.2013.270
https://doi.org/10.1109/TRO.2017.2705103
https://developer.nvidia.com/tensorrt
https://www.tesla.com/AI

Scheduling for Cyber-Physical Systems with Heterogeneous Processing Units under Real-World Constraints ICS ’24, June 04–07, 2024, Kyoto, Japan

A APPENDIX:
A.1 AuWL Grammar
The complete AuWL grammar in Backus-Naur Form (BNF) is given
below.

⟨program⟩ → “model”⟨NAME⟩“{”⟨program_body⟩“}”
⟨program_body⟩ → ⟨param_list⟩∗ ⟨function⟩∗ ⟨data_item⟩∗ ⟨operation⟩∗

⟨param_list⟩ → “param”⟨params⟩
⟨params⟩ → ⟨param⟩

| ⟨param⟩“,”⟨params⟩
⟨param⟩ → ⟨NAME⟩“=”⟨expression⟩

⟨function⟩ → “fun”⟨NAME⟩“(”⟨name⟩“)”“=”⟨expression⟩
⟨expression⟩ → ⟨term⟩⟨ADD_OP⟩⟨term⟩∗

⟨term⟩ → ⟨factor⟩⟨MUL_OP⟩⟨factor⟩∗

⟨factor⟩ → ⟨NAME⟩“(”⟨expression⟩“,”⟨expression⟩∗“)”?
| ⟨NUMBER⟩
| “(”⟨expression⟩“)”

⟨data_list⟩ → ⟨data_item⟩
| ⟨data_item⟩⟨data_list⟩

⟨data_item⟩ → “data”⟨NAME⟩⟨dimension⟩∗ ⟨tags⟩?
⟨dimensions⟩ → ⟨dimension⟩

| ⟨dimension⟩⟨dimensions⟩
⟨dimension⟩ → “[”⟨NAME⟩“]”

⟨operation_list⟩ → ⟨operation⟩
| ⟨operation⟩⟨operation_list⟩

⟨operation⟩ → “op”⟨NAME⟩⟨tags⟩
⟨tags⟩ → “{”⟨tag_list⟩“}”

⟨tag_list⟩ → ⟨tag⟩
| ⟨tag⟩“;”⟨tag_list⟩

⟨tag⟩ → ⟨NAME⟩“=”⟨values⟩
⟨values⟩ → ⟨value⟩

| ⟨value⟩“,”⟨values⟩

A.2 Detailed Physical Constraints
A.2.1 Heat: To create a tractable linear constraint for heat, we model
the steady state (temperature change is 0) heat flow instead of the current
temperature. With𝑇 as temperature and total specific heat𝐶 , the equation
for heat flow in the steady state is:

𝑑𝑇𝑠𝑦𝑠

𝑑𝑡
= 𝐶 · (𝑃𝑖𝑛 − 𝑃𝑜𝑢𝑡) ≤ 0 (6)

𝑃𝑖𝑛 is computation power, and 𝑃𝑜𝑢𝑡 is proportional to the difference in
temperature.

𝐶 ·
(
𝑃𝑐𝑜𝑚𝑝 − 𝑘 (𝑇𝑚𝑎𝑥 − 𝑇𝑎𝑚𝑏)

)
≤
𝑑𝑇𝑠𝑦𝑠

𝑑𝑡
≤ 0 (7)

The dynamics of compressible fluid mechanics with heat sources is
complex. Conservatively, we neglect additional convection from movement
and air currents (which could only improve 𝑃𝑜𝑢𝑡) by experimentally finding
𝑘 in a still room.

The maximum operating temperature is used for the steady state — if
the flow at this point is 0, it can never exceed the maximum. Although this
does overestimate the flow out, it conservatively guarantees that any lower
flow will eventually reach equilibrium. To use this constraint in CAuWS,
we integrate by time. This discretizes 𝑃𝑐𝑜𝑚𝑝 to the energy of all operations

per iteration and adds the term 𝑡 ⟨end⟩ (total latency) to 𝑃𝑜𝑢𝑡 . Heat changes
on timescales much longer than 𝑡 ⟨end⟩ , so this discretization introduces
negligible error. The final constraint is:

𝐶 ·
(∑︁

𝐸𝑜𝑝 − 𝑘 (𝑇𝑚𝑎𝑥 − 𝑇𝑎𝑚𝑏) · 𝑡 ⟨end⟩
)
≤ Δ𝑇𝑠𝑦𝑠 ≤ 0 (8)

For the experiment,𝑇𝑚𝑎𝑥 is set to be the temperature of AGX reaching
the rated 85◦𝐶 . To determine the other constants, an intensive program is
run and an exponential function is fit to the resulting temperature curve.
The die temperature and power were collected by reading the correspond-
ing I2C addresses on the Xavier AGX. Knowing power consumption, this
experiment determines the relationship between temperature increase and
joules consumed (specific heat𝐶 = 59.3𝐽 /◦𝐶). It also determines the rate
constant for cooling down (𝑘 = 0.331𝑊 /◦𝐶) based on the curve fitting.

A.2.2 Power limits: Power on a drone is shared between the rotors and
the computation. The power output of a battery is also limited.

𝑃𝑏𝑎𝑡𝑡𝑒𝑟𝑦 > 𝑃𝑡𝑜𝑡𝑎𝑙 = 𝑃𝑎𝑐𝑡 + 𝑃𝑐𝑜𝑚𝑝 (9)

𝑃𝑎𝑐𝑡 can further be broken down into terms representing the required power
to: (i) stay aloft, (ii) maintain a velocity against drag, and (iii) maintain thrust
to accelerate. 𝑃𝑎𝑙𝑜𝑓 𝑡 = 700.7𝑊 was determined experimentally by hovering
in simulation.

For 𝑃𝑣𝑒𝑙 , we approximate the air resistance as 𝑘𝑎𝑖𝑟 · 𝑣2 and the thrust
output of a drone rotor as 𝑘𝑡ℎ𝑟𝑢𝑠𝑡 · 𝑃𝑎𝑐𝑐𝑒𝑙 . While hovering, the thrust must
be equal to the weight. This gives an estimate of 𝑘𝑡ℎ𝑟𝑢𝑠𝑡 = 0.0210𝑁 /𝑊 .
Balancing these forces:

𝑃𝑣𝑒𝑙 =
√︁
𝑘𝑎𝑖𝑟 /𝑘𝑡ℎ𝑟𝑢𝑠𝑡 ·

√
𝑣 (10)

The value of
√︁
𝑘𝑎𝑖𝑟 /𝑘𝑡ℎ𝑟𝑢𝑠𝑡 = 7.6 was experimentally determined by flying

at a fixed velocity.
Likewise, if we are currently in an accelerating maneuver, we add an

additional term:
𝑃𝑎𝑐𝑐𝑒𝑙 = 𝑘𝑡ℎ𝑟𝑢𝑠𝑡 ·𝑚𝑎𝑠𝑠 · 𝑎 (11)

Combining these terms results in the equation:

𝑃𝑏𝑎𝑡𝑡𝑒𝑟𝑦 > 𝑃𝑎𝑐𝑐𝑒𝑙 + 𝑃𝑣𝑒𝑙 + 𝑃𝑎𝑙𝑜𝑓 𝑡 + 𝑃𝑐𝑜𝑚𝑝 (12)

In the experiment, 𝑃𝑏𝑎𝑡𝑡𝑒𝑟𝑦 = 1800𝑊 was set to be the nominal maximum
battery output from specification.

A.2.3 Stopping Distance: As discussed in Section 7.2, the drone has a
“reaction time” due to latency. During this time 𝑡 ⟨end⟩ the drone will continue
to move at its current velocity. Once this time is over, we assume that it can
put the full power of the battery towards accelerating, represented in the
term 𝑎𝑚𝑎𝑥 = 𝑘𝑡ℎ𝑟𝑢𝑠𝑡 · 𝑃𝑏𝑎𝑡𝑡𝑒𝑟𝑦 = 37.7622𝑚/𝑠2.

The basic constraint on the equation of motion is:

𝐷𝑜𝑏𝑠𝑡 > 𝐷𝑠𝑡𝑜𝑝 = 𝑣 · 𝑡 ⟨end⟩ + 1
2
𝑎𝑚𝑎𝑥 · 𝑡2𝑠𝑡𝑜𝑝 (13)

We can rewrite this equation to simplify 𝑡𝑠𝑡𝑜𝑝 = 𝑣
𝑎𝑚𝑎𝑥

for the final
equation:

𝐷𝑜𝑏𝑠𝑡 > 𝐷𝑠𝑡𝑜𝑝 = 𝑣 · 𝑡 ⟨end⟩ + 1
2𝑎𝑚𝑎𝑥

· 𝑣2 (14)

A.3 Theorem Proof
Proof for Theorem 5.1:

Let 𝑅 be such a convex region.
Let the input variables be 𝑥1, 𝑥2, ..., be bounded correspondingly by

𝑥1,𝑚𝑖𝑛, 𝑥1,𝑚𝑎𝑥 , 𝑥2,𝑚𝑖𝑛 ...

Let the unknown variables be 𝑦1, 𝑦2, ..., some of which (such as TIME)
are the desired outputs.

Let all constraints be written as 𝑐1 (𝑥1 ...) > 0, 𝑐2 (𝑥1 ...) > 0..., and the
objective be written as𝑂 (𝑥1 ...) . Assume there exist 𝑛 bases 𝐾 = 𝑘1, 𝑘2 ...
such that for any points 𝑋1 and 𝑋2 within the bounds, for all constraints,
𝐾 ¤(𝑋2 − 𝑋1) ≥ 0 =⇒ 𝑐 (𝑋2) − 𝑐 (𝑋1) ≥ 0. (This mathematically assumes
that each constraint is monotonic, i.e., strictly increasing or decreasing, even

310

ICS ’24, June 04–07, 2024, Kyoto, Japan Justin McGowen, Ismet Dagli, Neil T. Dantam, and Mehmet E. Belviranli

if discontinuous, with respect to each variable. For example, in Sec. 7.2, for
𝑣𝑒𝑙 > 0 and 𝑡𝑚𝑝 > 0, the following constraints

(< (+ (* vel vel) (* TIME temp)) 100)

would be allowed, but the following constraints
(< (* TIME POWER) 100)
(< (* (- vel 10) (- vel 10)) 100)

would not be allowed.)
For a proof by contradiction, let 𝑃 be a point in 𝑅 that does not share a

schedule with the border of 𝑅.
As𝑅 is convex, for any basis direction we choose, there is a line 𝐿 starting

and ending on 𝑅 that passes through 𝑃 without intersecting 𝑅. We call the
endpoints of this line𝑄1 and𝑄2. As the endpoints𝑄1 and𝑄2 of 𝐿 are on
the border of 𝑅, we know they share the same optimal schedule.

Starting at one endpoint𝑄1, there are 2 cases where 𝑃 could require a
different schedule:
(1) An inequality constraint was violated by moving along 𝐿 and keeping

other values constant.
(2) The objective function resulted in a better optimum when moving along

𝐿, resulting in a different schedule being chosen.

For whichever case is violated by 𝑃 , choose a line 𝐾 · 𝑋 . By the earlier
assumption, the 𝑐 () or𝑂 () 𝑃 violates is monotonic along this line, and, by
having 𝑛 as the basis, is reachable from the border.

For the endpoints 𝑄1 and 𝑄2 to share a schedule, but not 𝑃 , this is a
contradiction. In case (1), it would have to satisfy an inequality, then not
satisfy it, then satisfy it again. This is not possible with a monotonic function.
In case (2), the objective function is also monotonic. If 𝑃 ’s schedule was
chosen over𝑄1, then it must be more optimal. As such,𝑄2 must be at least
as optimal as 𝑃 , a contradiction. By contradiction, 𝑃 must have the same
schedule as𝑄1 and𝑄2. As 𝑃 was an arbitrary point in 𝑅, any point inside
𝑅 must share the same schedule.

It is possible to extrapolate to regions of any dimension through in-
duction. The 0-dimensional case is a single point and trivially shares the
same schedule. The regions of 𝑛 dimensions can always be bounded by a
combination of linear regions of dimension 𝑛 − 1. For a target polytope (𝑛-
dimensional extension of polygons), the problem can be reduced to checking
that its border 𝑛 − 1 dimensional polytopes share a schedule, which reduces
to checking their 𝑛 − 2 borders, until we check 0-dimensional borders (the
corner points).

Thus, any convex polytope with monotonic constraints bounded by
points that share a schedule must entirely share a schedule.

311

	Abstract
	1 Introduction
	2 Related Work
	3 Petri Nets for Heterogeneous Scheduling
	4 CAuWS: Proposed Methodology
	4.1 System Specification
	4.2 Petri Net Intermediate Representation
	4.3 Constraint Generation
	4.4 Schedule Generation

	5 Handling Dynamic Conditions in CPS via Static Scheduling
	5.1 Computation Time
	5.2 Physical Factors

	6 Experiments
	6.1 Methodology

	7 Case Study 1: Environment-limited Search and Rescue
	7.1 Description
	7.2 Constraints
	7.3 Results

	8 Case Study 2: Discovery & Tracking
	8.1 Criteria 1: Power Limits
	8.2 Criteria 2: Multiple Modes and Latency Limits

	9 Comparison with state-of-the-art
	9.1 F-1: Roofline Model for Physical Constraints
	9.2 -RT: Scheduling for Heterogeneous SoCs

	10 Conclusion
	Acknowledgments
	References
	A Appendix:
	A.1 AuWL Grammar
	A.2 Detailed Physical Constraints
	A.3 Theorem Proof

